当前位置: X-MOL 学术arXiv.cs.IT › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
A Tutorial of Ultra-Reliable and Low-Latency Communications in 6G: Integrating Theoretical Knowledge into Deep Learning
arXiv - CS - Information Theory Pub Date : 2020-09-13 , DOI: arxiv-2009.06010
Changyang She and Chengjian Sun and Zhouyou Gu and Yonghui Li and Chenyang Yang and H. Vincent Poor and Branka Vucetic

As one of the key communication scenarios in the 5th and also the 6th generation (6G) cellular networks, ultra-reliable and low-latency communications (URLLC) will be central for the development of various emerging mission-critical applications. The state-of-the-art mobile communication systems do not fulfill the end-to-end delay and overall reliability requirements of URLLC. A holistic framework that takes into account latency, reliability, availability, scalability, and decision-making under uncertainty is lacking. Driven by recent breakthroughs in deep neural networks, deep learning algorithms have been considered as promising ways of developing enabling technologies for URLLC in future 6G networks. This tutorial illustrates how to integrate theoretical knowledge (models, analysis tools, and optimization frameworks) of wireless communications into different kinds of deep learning algorithms for URLLC. We first introduce the background of URLLC and review promising network architectures and deep learning frameworks in 6G. To better illustrate how to improve learning algorithms with theoretical knowledge, we revisit model-based analysis tools and cross-layer optimization frameworks for URLLC. Following that, we examine the potential of applying supervised/unsupervised deep learning and deep reinforcement learning in URLLC and summarize related open problems. Finally, we provide simulation and experimental results to validate the effectiveness of different learning algorithms and discuss future directions.

中文翻译:

6G超可靠低时延通信教程:将理论知识融入深度学习

作为第 5 代和第 6 代 (6G) 蜂窝网络中的关键通信场景之一,超可靠和低延迟通信 (URLLC) 将成为各种新兴关键任务应用开发的核心。最先进的移动通信系统不能满足 URLLC 的端到端延迟和整体可靠性要求。缺乏将延迟、可靠性、可用性、可扩展性和不确定性下的决策考虑在内的整体框架。在深度神经网络最近取得的突破的推动下,深度学习算法被认为是在未来 6G 网络中为 URLLC 开发使能技术的有前途的方法。本教程说明了如何整合理论知识(模型、分析工具、和优化框架)将无线通信转换为不同类型的 URLLC 深度学习算法。我们首先介绍了 URLLC 的背景,并回顾了 6G 中很有前景的网络架构和深度学习框架。为了更好地说明如何用理论知识改进学习算法,我们重新审视了基于模型的分析工具和 URLLC 的跨层优化框架。接下来,我们研究了在 URLLC 中应用有监督/无监督深度学习和深度强化学习的潜力,并总结了相关的开放问题。最后,我们提供模拟和实验结果来验证不同学习算法的有效性并讨论未来的方向。我们首先介绍了 URLLC 的背景,并回顾了 6G 中很有前景的网络架构和深度学习框架。为了更好地说明如何用理论知识改进学习算法,我们重新审视了基于模型的分析工具和 URLLC 的跨层优化框架。之后,我们研究了在 URLLC 中应用有监督/无监督深度学习和深度强化学习的潜力,并总结了相关的开放问题。最后,我们提供模拟和实验结果来验证不同学习算法的有效性并讨论未来的方向。我们首先介绍了 URLLC 的背景,并回顾了 6G 中很有前景的网络架构和深度学习框架。为了更好地说明如何用理论知识改进学习算法,我们重新审视了基于模型的分析工具和 URLLC 的跨层优化框架。之后,我们研究了在 URLLC 中应用有监督/无监督深度学习和深度强化学习的潜力,并总结了相关的开放问题。最后,我们提供模拟和实验结果来验证不同学习算法的有效性并讨论未来的方向。我们研究了在 URLLC 中应用有监督/无监督深度学习和深度强化学习的潜力,并总结了相关的开放性问题。最后,我们提供模拟和实验结果来验证不同学习算法的有效性并讨论未来的方向。我们研究了在 URLLC 中应用有监督/无监督深度学习和深度强化学习的潜力,并总结了相关的开放性问题。最后,我们提供模拟和实验结果来验证不同学习算法的有效性并讨论未来的方向。
更新日期:2020-09-15
down
wechat
bug