当前位置: X-MOL 学术Small › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Enhancing Charge Separation through Oxygen Vacancy-Mediated Reverse Regulation Strategy Using Porphyrins as Model Molecules.
Small ( IF 13.0 ) Pub Date : 2020-09-15 , DOI: 10.1002/smll.202001752
Dan Yin 1 , Xingming Ning 1 , Ruizhong Zhang 1 , Peiyao Du 1, 2 , Dongxu Zhang 1 , Yang Deng 1 , Jia Liu 1 , Qi Zhang 1 , Zhen Zhang 1 , Xiaoquan Lu 2
Affiliation  

Highly efficient charge separation has been demonstrated as one of the most significant steps playing decisive roles in enhancing the overall efficiency of photoelectrochemical (PEC) processes. In this study, by employing 5,10,15,20‐tetrakis (4‐carboxyphenyl) porphyrin‐Ni (NiTCPP) as a prototype, an oxygen vacancy (Vo)‐mediated reverse regulation strategy is proposed for tuning hole transfer, which in turn can accelerate the transport of electrons and thus enhancing charge separation. The optimal NiO/NiTCPP system exhibits much higher (≈40 times) photocurrent and longer (≈13 times) lifetime of charge carriers compared with those of pure NiTCPP. Furthermore, the electron transfer kinetic rate constant (Keff) is quantitatively determined by an efficient scanning photoelectrochemical microscopy (SPECM). The Keff of the optimal system has a 5.7‐fold improvement. In addition, the similar enhancement in charge separation from other semiconductors (CoTCPP and FeTCPP) are also observed, indicating that the Vo‐mediated reverse regulation strategy is a promising pathway for tuning the properties of light harvesters in solar energy conversion.

中文翻译:

通过以卟啉为模型分子的氧空位介导的反向调节策略来增强电荷分离。

高效的电荷分离已被证明是最重要的步骤之一,在提高光电化学(PEC)工艺的整体效率中起着决定性的作用。在这项研究中,通过使用5,10,15,20-四(4-羧基苯基)卟啉-镍(NiTCPP)作为原型,提出了氧空位(Vo)介导的反向调节策略来调节空穴转移,转弯可以加速电子的传输,从而增强电荷分离。与纯NiTCPP相比,最佳的NiO / NiTCPP系统表现出更高(约40倍)的光电流和更长(约13倍)的载流子寿命。此外,电子传递动力学速率常数(K eff)是通过高效扫描光电化学显微镜(SPECM)定量确定的。最佳系统的K eff提高了5.7倍。此外,还观察到与其他半导体(CoTCPP和FeTCPP)的电荷分离具有相似的增强作用,这表明Vo介导的反向调节策略是在太阳能转化中调节光收集器特性的有前途的途径。
更新日期:2020-10-08
down
wechat
bug