当前位置: X-MOL 学术Earth Space Sci. › 论文详情
Comparative Assessment of Snowfall Retrieval from Microwave Humidity Sounders using Machine Learning Methods
Earth and Space Science ( IF 2.312 ) Pub Date : 2020-09-14 , DOI: 10.1029/2020ea001357
Abishek Adhikari; Mohammad Reza Ehsani; Yang Song; Ali Behrangi

Accurate quantification of snowfall rate from space is important, but has remained difficult. Four years (2007‐2010) of NOAA‐18 Microwave Humidity Sounder (MHS) data are trained and tested with snowfall estimates from coincident CloudSat Cloud Profiling Radar (CPR) observations using several machine learning methods. Among the studied methods, random forest using MHS (RF‐MHS) is found the best for both detection and estimation of global snowfall. The RF‐MHS estimates are tested using independent years of coincident CPR snowfall estimates and compared with snowfall rates from Modern‐Era Retrospective analysis for Research and Applications Version 2 (MERRA‐2), Atmospheric Infrared Sounder (AIRS), and MHS Goddard Profiling Algorithm (GPROF). It was found that RF‐MHS algorithm can detect global snowfall with approximately 90% accuracy and a Heidke skill score of 0.48 compared to independent CloudSat samples. The surface wet bulb temperatures, brightness temperatures at 190 GHz, and 157 GHz channels are found to be the most important features to delineate snowfall areas. The RF‐MHS retrieved global snowfall rates are well compared with CPR estimates and show generally better statistics than MERRA‐2, AIRS, and GPROF products. A case study over the US verifies that the RF‐MHS estimated snowfall agrees well with the ground‐based NCEP Stage‐IV and MERRA‐2 product whereas a relatively large underestimation is observed with the current GPROF product (V05). MHS snowfall estimated based on RF algorithm, however, shows some underestimation over cold and snow‐covered surfaces (e.g., Greenland, Alaska, and Northern Russia), where improvements through new sensors or retrieval techniques are needed.
更新日期:2020-09-15

 

全部期刊列表>>
物理学研究前沿热点精选期刊推荐
科研绘图
欢迎报名注册2020量子在线大会
化学领域亟待解决的问题
材料学研究精选新
GIANT
自然职场线上招聘会
ACS ES&T Engineering
ACS ES&T Water
屿渡论文,编辑服务
阿拉丁试剂right
张晓晨
田蕾蕾
李闯创
刘天飞
隐藏1h前已浏览文章
课题组网站
新版X-MOL期刊搜索和高级搜索功能介绍
ACS材料视界
天合科研
x-mol收录
X-MOL
清华大学
廖矿标
陈永胜
试剂库存
down
wechat
bug