当前位置: X-MOL 学术Propuls. Power Res. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Finite element solution of nonlinear convective flow of Oldroyd-B fluid with Cattaneo-Christov heat flux model over nonlinear stretching sheet with heat generation or absorption
Propulsion and Power Research ( IF 5.3 ) Pub Date : 2020-09-15 , DOI: 10.1016/j.jppr.2020.07.001
Wubshet Ibrahim , Gosa Gadisa

In this study, a two-dimensional boundary layer flow of steady incompressible nonlinear convective flow of Oldroyd-B fluid over a nonlinearly stretching sheet with Cattaneo-Christov heat flux model and heat generation or absorption is examined. The governing equations of the boundary layer flow which are highly nonlinear partial differential equations are converted to the ordinary differential equations using similarity transformations and then the Galerkin finite element method (GFEM) is used to solve the proposed problem. The effect of local Deborah numbers β1 and β2, local buoyancy parameter λ, Prandtl number Pr, Deborah number γ, and heat generation/absorption parameter δ on the temperature and the velocity as well as heat transfer rate and shear stress are discussed both in graphical and tabular forms. The result shows the enlargement in the local buoyancy parameter λ will improve the velocity field and the heat transfer rate of the boundary layer flow. Moreover, our present work evinced both local skin friction coefficient and heat transfer rate step up if we add the values of non-linear stretching sheet parameter and local heat generation/absorption parameter has quite the opposite effect. The numerically computed values of local skin friction coefficient and local Nusselt number are validated with available literature and evinced excellent agreement.



中文翻译:

基于Cattaneo-Christov热流模型的非线性拉伸片上生热或吸收的Oldroyd-B流体非线性对流的有限元解

在这项研究中,利用Cattaneo-Christov热通量模型和热量产生或吸收,研究了Oldroyd-B流体在非线性拉伸片材上的稳定不可压缩非线性对流的二维边界层流。边界层流的控制方程是高度非线性的偏微分方程,通过相似性转换将其转换为常微分方程,然后使用Galerkin有限元方法(GFEM)来解决所提出的问题。本地Deborah数的影响β1个β2,局部浮力参数 λ,Prandtl数Pr,Deborah数γ,以及生热/吸收参数 δ以图形和表格形式讨论了温度,速度以及传热速率和剪切应力。结果表明局部浮力参数增大λ将改善边界层流的速度场和传热速率。此外,如果我们添加非线性拉伸片参数的值,并且局部生热/吸收参数具有相反的效果,则我们目前的工作表明局部皮肤摩擦系数和传热速率都将提高。局部皮肤摩擦系数和局部Nusselt值的数值计算值已通过现有文献验证,并显示出极好的一致性。

更新日期:2020-10-11
down
wechat
bug