当前位置: X-MOL 学术J. Mater. Sci. Technol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
A high-performance Mg-4.9Gd-3.2Y-1.1Zn-0.5Zr alloy via multidirectional forging after analyzing its compression behavior
Journal of Materials Science & Technology ( IF 10.9 ) Pub Date : 2020-09-15 , DOI: 10.1016/j.jmst.2020.08.054
Xiaojie Zhou , Yuan Yao , Jian Zhang , Xiaomin Chen , Weiying Huang , Jing Pan , Haoran Wang , Maopeng Weng

A high-performance Mg-4.9Gd-3.2Y-1.1Zn-0.5 Zr alloy has been fabricated by multidirectional forging (MDF) after analyzing its compression behavior. The as-homogenized alloy exhibits a high activation energy Q of deformation (∼285 kJ/mol). The size of DRXed grains after compression tends to decrease as the Z-H parameter (Z) increases, showing a grain size exponent m of ∼4.0. Lamellar LPSO phases, kinking deformation, and bimodal microstructure are detected at the relatively low compression temperature of 350 and 400 °C, while sufficient DRX can be achieved at 500 °C, accompanied by the dissolution of lamellar LPSO. According to the processing maps, MDF was successfully conducted under an appropriate condition. After peak-aged at 200 °C for 78 h, the MDFed billet exhibits a tensile yield strength (TYS) of 331 and 305 MPa at room temperature and 200 °C, respectively. The high strength mainly results from the combination of fine grains, low Schmid factor for basal slip, sufficient β' ageing precipitates, and directionally arranged interdendritic LPSO phases, etc. This paper provides a feasible way for the fabrication of high-performance, low-RE-content, and large-scale Mg components for industrial production.



中文翻译:

分析其压缩行为后,通过多向锻造的高性能Mg-4.9Gd-3.2Y-1.1Zn-0.5Zr合金

通过分析其压缩行为,通过多方向锻造(MDF)制备了高性能Mg-4.9Gd-3.2Y-1.1Zn-0.5 Zr合金。均质合金表现出高的变形活化能Q(〜285 kJ / mol)。随着ZH参数(Z)的增加,压缩后的DRXd晶粒尺寸趋于减小,显示出晶粒尺寸指数m约4.0。在相对较低的350和400°C压缩温度下,可检测到层状LPSO相,扭结变形和双峰微观结构,而在500°C时可获得足够的DRX,并伴随着层状LPSO的溶解。根据处理图,在适当的条件下成功进行了MDF。在200°C时效达到峰值78 h后,MDF坯料在室温和200°C下分别显示出331和305 MPa的拉伸屈服强度(TYS)。高强度主要归因于细晶粒的结合,低的施密德因子(Schmid),基滑β' 老化的析出物和定向排列的枝晶间LPSO相等。本文为工业化生产高性能,低稀土含量的大规模镁组分提供了可行的方法。

更新日期:2020-09-15
down
wechat
bug