当前位置: X-MOL 学术J. Energy Chem. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Coupling biomass pretreatment for enzymatic hydrolysis and direct biomass-to-electricity conversion with molybdovanadophosphoric heteropolyacids as anode electron transfer carriers
Journal of Energy Chemistry ( IF 14.0 ) Pub Date : 2020-09-15 , DOI: 10.1016/j.jechem.2020.09.009
Huishan Yang , Yuchen Bai , Denghao Ouyang , Fangqian Wang , Dehua Liu , Xuebing Zhao

Owing to their acidity, oxidizing ability and redox reversibility, molybdovanadophosphoric heteropolyacids (Hn+3PMo12-nVnO40, abbreviated as PMo12-nVn) were employed as electron transfer carriers for coupling biomass pretreatment for enzymatic hydrolysis and direct biomass-to-electricity conversion. In this novel coupled process, PMo12-nVn pretreatment that causes deconstruction of cell wall structure with PMo12-nVn being simultaneously reduced can be considered as the “charging” process. The reduced PMo12-nVn are further re-oxidized with release of electrons in a liquid flow fuel cell (LFFC) to generate electricity is the “discharging” process. Several Keggin-type PMo12-nVn with different degree of vanadium substitution (DSV, namely n) were prepared. Compared to Keggin-type phosphomolybdic acid (PMo12), PMo12-nVn (n=1–6) showed higher oxidizing ability but poorer redox reversibility. The cellulose enzymatic digestibility of PMo12-nVn pretreated wheat straw generally decreased with increase in DSV, but xylan enzymatic digestibility generally increased with DSV. PMo12 pretreatment of wheat straw at 120 °C obtained the highest enzymatic glucan conversion (EGC) reaching 95%, followed by PMo11V1 pretreatment (85%). Discharging of the reduced heteropolyacids in LFFC showed that vanadium substitution could improve the maximum output power density (Pmax). The highest Pmax was obtained by PMo9V3 (44.7 mW/cm2) when FeCl3 was used as a cathode electron carrier, while PMo12 achieved the lowest Pmax (27.4 mW/cm2). All the heteropolyacids showed good electrode Faraday efficiency (>95%) and cell discharging efficiency (>93%). The energy efficiency of the coupled process based on the heat values of the products and generated electric energy was in the range of 18%–25% depending on DSV. PMo12 and PMo11V1 seems to be the most suitable heteropolyacids to mediate the coupled process.



中文翻译:

偶联偶联生物质预处理以进行酶促水解,并使用钼钒钒磷酸杂多酸作为阳极电子转移载体直接进行生物质至电的转化

由于其酸度,氧化能力和氧化还原可逆性,钼钒钒杂多酸(H n +3 PMo 12- n V n O 40,缩写为PMo 12- n V n)被用作电子转移载体,耦合生物质预处理进行酶促水解和直接生物质发电。在这种新颖的耦合过程中,将PMo 12- n V n预处理同时导致PMo 12- n V n减少的同时导致细胞壁结构破坏的预处理可被视为“充电”过程。降低的PMo在液流燃料电池(LFFC)中,随着电子的释放,12- n V n进一步被再氧化以产生电能,这是“放电”过程。制备了几种具有不同钒取代度的Keggin型PMo 12 - n V n(DS V,即n)。与Keggin型磷钼酸(PMo 12)相比,PMo 12- n V nn = 1–6)显示出更高的氧化能力,但氧化还原可逆性却较差。PMo 12- n V n的纤维素酶消化率预处理的麦草随DS V的增加而降低,但木聚糖酶消化率随DS V的增加而增加。在120°C下对小麦秸秆进行PMo 12预处理可获得最高的酶促葡聚糖转化率(EGC),达到95%,然后进行PMo 11 V 1预处理(85%)。LFFC中还原的杂多酸的放电表明,钒取代可以提高最大输出功率密度(P max)。当FeCl 3为PMo 9 V 3(44.7 mW / cm 2)时,P max最高。PMO 12用作阴极电子载体,而PMo 12达到最低的P max(27.4 mW / cm 2)。所有杂多酸均显示出良好的电极法拉第效率(> 95%)和电池放电效率(> 93%)。根据产品和产生的电能的热值的联接过程的能量效率是取决于DS 18%-25%的范围内V。PMo 12和PMo 11 V 1似乎是介导偶联过程的最合适的杂多酸。

更新日期:2020-09-15
down
wechat
bug