当前位置: X-MOL 学术Int. J. Hydrogen Energy › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Reaction performance and lattice oxygen migration of MnFe2O4 oxygen carrier in methane-carbon dioxide reaction system
International Journal of Hydrogen Energy ( IF 8.1 ) Pub Date : 2020-09-15 , DOI: 10.1016/j.ijhydene.2020.08.103
Huan Zhou , Qun Yi , Guoqiang Wei , Yuke Zhang , Yalei Hou , Zhen Huang , Anqing zheng , Zengli Zhao , Haibin Li

Chemical looping partial oxidation of methane (CLPOM) coupled with carbon dioxide splitting process was proposed in this work to achieve high H2/CO ratio syngas and CO production simultaneously. Manganese ferrite (MnFe2O4) oxygen carrier with a spinel structure was prepared by using a co-precipitation phase inversion method for this methane-carbon dioxide reaction system. The reaction performance of oxygen carrier was investigated in fixed bed reactor combined with the analytical methods of XRD, TPR, H2-TG and XPS. The results revel that spinel structure MnFe2O4was successfully prepared and Fe is the main active spices to release lattice oxygen. TG analysis confirms that 43.3% of lattice oxygen can release from MnFe2O4 in H2 atmosphere with highest release rate 0.4%/min at 721 °C. The maximum conversion of CH4 and CO2 are 63% and 99% achieved in CLPOM coupled with CO2 splitting process and temperature makes a positive effect on the reaction process. Moreover, the reaction stability of MnFe2O4 oxygen carrier are verified in 10 cycles reaction of CLPOM coupled with CO2 splitting with the reaction path MnFe2O4 (FeO)0.798-(MnO)0·202/FeO MnFe2O4. Moreover, The MnFe2O4 oxygen carriers with different reduction stages were analyzed by XPS to reveal lattice oxygen migration mechanism, which indicates that the bulk lattice oxygen of oxygen carrier gradually dissociated and migrated to the outer surface in reaction process where reacts directly with methane or converts to oxygen adsorption OII. The valence of Mn has not changed in the whole reaction process, whereas, Mn species forms the synergistic effect with Fe to improve the conversion of CH4 and CO2, promoting the oxidization of Fe2+ to Fe3+ in CO2 atmosphere. MnFe2O4 oxygen carrier is a promising candidate for the CLPOM coupled with CO2 splitting process.



中文翻译:

甲烷-二氧化碳反应体系中MnFe 2 O 4氧载体的反应性能和晶格氧迁移

这项工作提出了甲烷的化学循环部分氧化(CLPOM)结合二氧化碳的分解过程,以同时实现高H 2 / CO比合成气和CO的生产。采用共沉淀相转化法制备了该甲烷-二氧化碳反应体系的尖晶石结构锰铁氧体(MnFe 2 O 4)氧载体。结合XRD,TPR,H 2 -TG和XPS的分析方法,研究了固定床反应器中氧气载体的反应性能。结果表明尖晶石结构MnFe 2 O 4Fe是成功制备的,Fe是释放晶格氧的主要活性香料。TG分析证实,在H 2气氛中,MnFe 2 O 4可以释放出43.3%的晶格氧,在721°C下的最高释放速率为0.4%/ min。在CLPOM中,结合CO 2分解过程,CH 4和CO 2的最大转化率分别达到63%和99%,温度对反应过程产生积极影响。此外,通过CLPOM的10个循环反应与通过反应路径MnFe 2 O 4分解的CO 2耦合,证实了MnFe 2 O 4氧载体的反应稳定性。 (FeO)0.798-(MnO)0·202 / FeOMnFe 2 O 4。此外,通过XPS分析了不同还原阶段的MnFe 2 O 4载氧体,揭示了晶格氧的迁移机理,表明在与甲烷直接反应的反应过程中,氧载体的整体晶格氧逐渐解离并迁移至外表面。或转化为氧气吸附的OII。Mn的化合价在整个反应过程中没有改变,反之,锰物种形成与铁的协同效应,以改善CH的转化4和CO 2,促进铁的氧化2+与Fe 3+在CO 2气氛中。锰铁2O 4氧载体是结合C 2裂解工艺的CLPOM的有前途的候选物。

更新日期:2020-10-30
down
wechat
bug