当前位置: X-MOL 学术Geosci. Front. › 论文详情
Spatial landslide susceptibility assessment using machine learning techniques assisted by additional data created with generative adversarial networks
Geoscience Frontiers ( IF 4.202 ) Pub Date : 2020-09-15 , DOI: 10.1016/j.gsf.2020.09.002
Husam.A.H. Al-Najjar; Biswajeet Pradhan

In recent years, landslide susceptibility mapping has substantially improved with advances in machine learning. However, there are still challenges remain in landslide mapping due to the availability of limited inventory data. In this paper, a novel method that improves the performance of machine learning techniques is presented. The proposed method creates synthetic inventory data using Generative Adversarial Networks (GANs) for improving the prediction of landslides. In this research, landslide inventory data of 156 landslide locations were identified in Cameron Highlands, Malaysia, taken from previous projects the authors worked on. Elevation, slope, aspect, plan curvature, profile curvature, total curvature, lithology, land use and land cover (LULC), distance to the road, distance to the river, stream power index (SPI), sediment transport index (STI), terrain roughness index (TRI), topographic wetness index (TWI) and vegetation density are geo-environmental factors considered in this study based on suggestions from previous works on Cameron Highlands. To show the capability of GANs in improving landslide prediction models, this study tests the proposed GAN model with benchmark models namely Artificial Neural Network (ANN), Support Vector Machine (SVM), Decision Trees (DT), Random Forest (RF) and Bagging ensemble models with ANN and SVM models. These models were validated using the area under the receiver operating characteristic curve (AUROC). The DT, RF, SVM, ANN and Bagging ensemble could achieve the AUROC values of (0.90, 0.94, 0.86, 0.69 and 0.82) for the training; and the AUROC of (0.76, 0.81, 0.85, 0.72 and 0.75) for the test, subsequently. When using additional samples, the same models achieved the AUROC values of (0.92, 0.94, 0.88, 0.75 and 0.84) for the training and (0.78, 0.82, 0.82, 0.78 and 0.80) for the test, respectively. Using the additional samples improved the test accuracy of all the models except SVM. As a result, in data-scarce environments, this research showed that utilizing GANs to generate supplementary samples is promising because it can improve the predictive capability of common landslide prediction models.

更新日期:2020-09-15

 

全部期刊列表>>
《自然》编辑与您分享如何成为优质审稿人-信息流
物理学研究前沿热点精选期刊推荐
科研绘图
欢迎报名注册2020量子在线大会
化学领域亟待解决的问题
材料学研究精选新
GIANT
自然职场线上招聘会
ACS ES&T Engineering
ACS ES&T Water
屿渡论文,编辑服务
阿拉丁试剂right
张晓晨
田蕾蕾
李闯创
刘天飞
隐藏1h前已浏览文章
课题组网站
新版X-MOL期刊搜索和高级搜索功能介绍
ACS材料视界
天合科研
x-mol收录
X-MOL
清华大学
廖矿标
陈永胜
试剂库存
down
wechat
bug