当前位置: X-MOL 学术Energy Convers. Manag. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Hybrid thermochemical cycles for low-grade heat storage and conversion into cold and/or power
Energy Conversion and Management ( IF 9.9 ) Pub Date : 2020-12-01 , DOI: 10.1016/j.enconman.2020.113347
Alexis Godefroy , Maxime Perier-Muzet , Pierre Neveu , Nathalie Mazet

Abstract This paper investigates several new hybrid cycles combining a solid/gas sorption refrigeration cycle with a Rankine cycle, and targeting three key functions: they are able to recover low-grade heat (for instance industrial waste heat), to store this energy, and to convert it into cold and/or power. Five operating modes have been designed, for either prevailing cold production or power generation. A thermodynamic analysis was performed to evaluate their energy and exergy performances, for a wide variety of reactive salts in the thermochemical system. Depending on the different modes and reactants, these hybrid thermochemical cycles can operate at temperatures as low as 87 °C. The share of power in total energy production lies between 0 and 30% for prevailing cold production modes, and between 50 and 100% for prevailing power generation modes. The energy and exergy efficiency reach 0.61 and 0.41, respectively. The energy storage density reaches about 170 kWh per m3 of storage system. In some cases, additional power generation occurs during the charging step. Alternative systems performing the same functions and based on commercial systems have been designed and compared with hybrid thermochemical cycles. This comparison highlights that the energy storage density is lower for hybrid cycles. However, the global energy efficiency can be higher for hybrids, especially for prevailing cold production modes where it can be 34% higher than for the alternative commercial system.

中文翻译:

混合热化学循环,用于低品位储热和转化为冷和/或电力

摘要 本文研究了几种将固/气吸附制冷循环与朗肯循环相结合的新型混合循环,并针对三个关键功能:它们能够回收低品位热量(例如工业废热),储存这种能量,以及将其转换为冷量和/或电力。设计了五种运行模式,用于盛行的冷生产或发电。进行热力学分析以评估热化学系统中各种活性盐的能量和火用性能。根据不同的模式和反应物,这些混合热化学循环可以在低至 87 °C 的温度下运行。对于流行的冷生产模式,电力在总能源生产中的份额介于 0% 和 30% 之间,并且在 50% 和 100% 之间适用于流行的发电模式。能量和火用效率分别达到0.61和0.41。储能密度达到每立方米储能系统约 170 千瓦时。在某些情况下,在充电步骤期间会产生额外的电力。已经设计了具有相同功能并基于商业系统的替代系统,并与混合热化学循环进行了比较。这种比较突出表明,混合动力循环的储能密度较低。然而,混合动力车的全球能源效率可能更高,特别是对于流行的冷生产模式,它可以比替代商业系统高 34%。在某些情况下,在充电步骤期间会产生额外的电力。已经设计了具有相同功能并基于商业系统的替代系统,并与混合热化学循环进行了比较。这种比较突出表明,混合动力循环的储能密度较低。然而,混合动力车的全球能源效率可能更高,特别是对于流行的冷生产模式,它可以比替代商业系统高 34%。在某些情况下,在充电步骤期间会产生额外的电力。已经设计了具有相同功能并基于商业系统的替代系统,并与混合热化学循环进行了比较。这种比较突出表明,混合动力循环的储能密度较低。然而,混合动力车的全球能源效率可能更高,特别是对于流行的冷生产模式,它可以比替代商业系统高 34%。
更新日期:2020-12-01
down
wechat
bug