当前位置: X-MOL 学术Energy Convers. Manag. › 论文详情
Hybrid thermochemical cycles for low-grade heat storage and conversion into cold and/or power
Energy Conversion and Management ( IF 8.208 ) Pub Date : 2020-09-14 , DOI: 10.1016/j.enconman.2020.113347
Alexis Godefroy; Maxime Perier-Muzet; Pierre Neveu; Nathalie Mazet

This paper investigates several new hybrid cycles combining a solid/gas sorption refrigeration cycle with a Rankine cycle, and targeting three key functions: they are able to recover low-grade heat (for instance industrial waste heat), to store this energy, and to convert it into cold and/or power. Five operating modes have been designed, for either prevailing cold production or power generation. A thermodynamic analysis was performed to evaluate their energy and exergy performances, for a wide variety of reactive salts in the thermochemical system. Depending on the different modes and reactants, these hybrid thermochemical cycles can operate at temperatures as low as 87 °C. The share of power in total energy production lies between 0 and 30% for prevailing cold production modes, and between 50 and 100% for prevailing power generation modes. The energy and exergy efficiency reach 0.61 and 0.41, respectively. The energy storage density reaches about 170 kWh per m3 of storage system. In some cases, additional power generation occurs during the charging step. Alternative systems performing the same functions and based on commercial systems have been designed and compared with hybrid thermochemical cycles. This comparison highlights that the energy storage density is lower for hybrid cycles. However, the global energy efficiency can be higher for hybrids, especially for prevailing cold production modes where it can be 34% higher than for the alternative commercial system.

更新日期:2020-09-15

 

全部期刊列表>>
《自然》编辑与您分享如何成为优质审稿人-信息流
物理学研究前沿热点精选期刊推荐
科研绘图
欢迎报名注册2020量子在线大会
化学领域亟待解决的问题
材料学研究精选新
GIANT
自然职场线上招聘会
ACS ES&T Engineering
ACS ES&T Water
屿渡论文,编辑服务
阿拉丁试剂right
张晓晨
田蕾蕾
李闯创
刘天飞
隐藏1h前已浏览文章
课题组网站
新版X-MOL期刊搜索和高级搜索功能介绍
ACS材料视界
天合科研
x-mol收录
X-MOL
清华大学
廖矿标
陈永胜
试剂库存
down
wechat
bug