当前位置: X-MOL 学术Appl. Surf. Sci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
CeO2/3D g-C3N4 Heterojunction Deposited with Pt Cocatalyst for Enhanced Photocatalytic CO2 Reduction
Applied Surface Science ( IF 6.7 ) Pub Date : 2021-01-01 , DOI: 10.1016/j.apsusc.2020.147891
Xiaoxue Zhao , Jingru Guan , Jinze Li , Xin Li , Huiqin Wang , Pengwei Huo , Yongsheng Yan

Abstract The conversion of CO2 into high value-added carbon-based compounds through photocatalytic reduction technology is considered as one of the more promising strategies to solve the greenhouse effect. And construction of heterojunction photocatalysts can promote the separation of photoelectron-hole pairs, so as to achieve higher activity of photocatalytic CO2 reduction. Hence, Pt@CeO2/3DCN heterojunction are prepared by calcination method and photoreduction technology. The photocatalytic results revealed that Pt@CeO2/3DCN show better photocatalytic activity for reducing CO2 into CO and CH4, compared with 3DCN. Especially, Pt@45CeO2/3DCN shows the maximum photocatalytic activity of 4.69 and 3.03 μmol·h−1·g−1 for CO and CH4 under UV light irradiation, respectively, and the reduction activity did not decrease significantly after five cycles. The enhanced photoreduction of CO2 performance can be ascribed to the synergistic effects of the oxygen vacancies in CeO2 for CO2 activation and heterojunction for electron separation. Besides, Pt nanoparticles (NPs) on CeO2/3DCN can further promote the transfer of electrons, resulting in higher photocatalytic activity.

中文翻译:

CeO2/3D g-C3N4 异质结与 Pt 助催化剂一起沉积以增强光催化 CO2 还原

摘要 通过光催化还原技术将CO2转化为高附加值的碳基化合物被认为是解决温室效应的更有前景的策略之一。而异质结光催化剂的构建可以促进光电子-空穴对的分离,从而实现更高的光催化CO2还原活性。因此,采用煅烧法和光还原技术制备了Pt@CeO2/3DCN异质结。光催化结果表明,与 3DCN 相比,Pt@CeO2/3DCN 在将 CO2 还原为 CO 和 CH4 方面表现出更好的光催化活性。特别是,Pt@45CeO2/3DCN在紫外光照射下对CO和CH4的最大光催化活性分别为4.69和3.03 μmol·h-1·g-1,5个循环后还原活性没有明显下降。CO2 性能的增强光还原可归因于 CeO2 中氧空位对 CO2 活化和异质结对电子分离的协同作用。此外,CeO2/3DCN 上的 Pt 纳米粒子 (NPs) 可以进一步促进电子的转移,从而提高光催化活性。
更新日期:2021-01-01
down
wechat
bug