当前位置: X-MOL 学术Int. J. Control Autom. Syst. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Passivity-based Voltage Controller for Tidal Energy Conversion System with Permanent Magnet Synchronous Generator
International Journal of Control, Automation and Systems ( IF 2.5 ) Pub Date : 2020-09-15 , DOI: 10.1007/s12555-019-0938-z
Youcef Belkhier , Abdelyazid Achour

Nonlinear dynamical and time varying parameters of the permanent magnet synchronous generator (PMSG), make it difficult to control. This paper presents a new passivity-based control (PBC) of tidal turbine based PMSG, connected to the grid through a back-to-back converter. The control problem is challenging for at least two reasons. First, the dynamics of the conversion system are described by a highly coupled set of nonlinear differential equations and various uncertainties of the PMSG model. Second, it is preferable to operate this kind of systems at the point of maximum power, which is a nonlinear function. To this end, two kinds of control strategies have been used. A new passivity-based voltage controller (PBVC) design applied to the machine-side, that ensures asymptotic convergence to the MPPT is presented. A proportional integral derivative (PID) is added to design a desired torque dynamic in order to guarantee a fast convergence and stability of the closed loop system, which allows to the PMSG to operate at an optimal speed. Secondly, a classical proportional integral (PI) controllers is applied to the grid-side in order to regulate the DC-Link voltage and to deliver only the active power into distribution network. Finally, the obtained simulation results under MATLAB/Simulink, show that the proposed control strategy ensures stability and fast response of the DC-link voltage and the reactive power generated is extremely minimized.



中文翻译:

带有永磁同步发电机的潮汐能转换系统的基于无源性的电压控制器

永磁同步发电机(PMSG)的非线性动力学和时变参数使控制变得困难。本文提出了一种新的基于潮汐涡轮机PMSG的基于无源性的控制(PBC),其通过背靠背转换器连接到电网。控制问题具有挑战性,至少有两个原因。首先,通过一组高度耦合的非线性微分方程和PMSG模型的各种不确定性来描述转换系统的动力学。其次,最好在最大功率的点上运行这种系统,这是一个非线性函数。为此,已经使用了两种控制策略。提出了一种新的基于无源的电压控制器(PBVC)设计,该设计应用于机器端,可确保向MPPT渐近收敛。为了确保闭环系统的快速收敛和稳定性,添加了比例积分微分(PID)以设计所需的转矩动态特性,从而使PMSG能够以最佳速度运行。其次,将经典的比例积分(PI)控制器应用于电网侧,以调节DC-Link电压并将仅有功功率输送到配电网中。最后,在MATLAB / Simulink下获得的仿真结果表明,所提出的控制策略确保了直流母线电压的稳定性和快速响应,并且极大地减小了产生的无功功率。传统的比例积分(PI)控制器应用于电网侧,以调节DC-Link电压并将仅有功功率输送到配电网。最后,在MATLAB / Simulink下获得的仿真结果表明,所提出的控制策略确保了直流母线电压的稳定性和快速响应,并且极大地减小了产生的无功功率。传统的比例积分(PI)控制器应用于电网侧,以调节DC-Link电压并将仅有功功率输送到配电网。最后,在MATLAB / Simulink下获得的仿真结果表明,所提出的控制策略确保了直流母线电压的稳定性和快速响应,并且极大地减小了产生的无功功率。

更新日期:2020-09-15
down
wechat
bug