当前位置: X-MOL 学术Phys. Rev. Research › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Theory of current-induced angular momentum transfer dynamics in spin-orbit coupled systems
Physical Review Research Pub Date : 2020-09-14 , DOI: 10.1103/physrevresearch.2.033401
Dongwook Go , Frank Freimuth , Jan-Philipp Hanke , Fei Xue , Olena Gomonay , Kyung-Jin Lee , Stefan Blügel , Paul M. Haney , Hyun-Woo Lee , Yuriy Mokrousov

Motivated by the importance of understanding various competing mechanisms to the current-induced spin-orbit torque on magnetization in complex magnets, we develop a theory of current-induced spin-orbital coupled dynamics in magnetic heterostructures. The theory describes angular momentum transfer between different degrees of freedom in solids, e.g., the electron orbital and spin, the crystal lattice, and the magnetic order parameter. Based on the continuity equations for the spin and orbital angular momenta, we derive equations of motion that relate spin and orbital current fluxes and torques describing the transfer of angular momentum between different degrees of freedom, achieved in a steady state under an applied external electric field. We then propose a classification scheme for the mechanisms of the current-induced torque in magnetic bilayers. We evaluate the sources of torque using density functional theory, effectively capturing the impact of the electronic structure on these quantities. We apply our formalism to two different magnetic bilayers, Fe/W(110) and Ni/W(110), which are chosen such that the orbital and spin Hall effects in W have opposite sign and the resulting spin- and orbital-mediated torques can compete with each other. We find that while the spin torque arising from the spin Hall effect of W is the dominant mechanism of the current-induced torque in Fe/W(110), the dominant mechanism in Ni/W(110) is the orbital torque originating in the orbital Hall effect of the nonmagnetic substrate. Thus, the effective spin Hall angles for the total torque are negative and positive in the two systems. Our prediction can be experimentally identified in moderately clean samples, where intrinsic contributions dominate. This clearly demonstrates that our formalism is ideal for studying the angular momentum transfer dynamics in spin-orbit coupled systems as it goes beyond the “spin current picture” by naturally incorporating the spin and orbital degrees of freedom on an equal footing. Our calculations reveal that, in addition to the spin and orbital torque, other contributions such as the interfacial torque and self-induced anomalous torque within the ferromagnet are not negligible in both material systems.

中文翻译:

自旋轨道耦合系统中电流感应角动量传递动力学的理论

出于理解各种竞争机制对复杂磁体中磁化中电流感应的自旋轨道转矩的重要性的激励,我们开发了一种磁异质结构中电流感应的自旋轨道耦合动力学的理论。该理论描述了固体中不同自由度(例如,电子轨道和自旋),晶格和磁阶参数之间的角动量传递。基于自旋和轨道角动量的连续性方程,我们导出了运动方程,它们与自旋和轨道电流通量和扭矩相关,描述了在外加电场下在稳态下实现的不同自由度之间角动量的传递。然后,我们针对磁性双层中电流感应转矩的机制提出了一种分类方案。我们使用密度泛函理论评估扭矩的来源,有效地捕获了电子结构对这些量的影响。我们将形式论应用于两个不同的磁性双层Fe / W(110)和Ni / W(110),选择它们的目的是使W中的轨道和自旋霍尔效应具有相反的符号,并产生自旋和轨道介导的转矩可以互相竞争。我们发现,虽然W的自旋霍尔效应引起的自旋转矩是Fe / W(110)中电流感应转矩的主导机制,而Ni / W(110)中的主导机制是源自于W / S的轨道转矩。非磁性衬底的轨道霍尔效应。就这样 我们使用密度泛函理论评估扭矩的来源,有效地捕获了电子结构对这些量的影响。我们将形式论应用于两个不同的磁性双层Fe / W(110)和Ni / W(110),选择它们的目的是使W中的轨道和自旋霍尔效应具有相反的符号,并产生自旋和轨道介导的转矩可以互相竞争。我们发现,虽然W的自旋霍尔效应引起的自旋转矩是Fe / W(110)中电流感应转矩的主导机制,而Ni / W(110)中的主导机制是源自于W / S的轨道转矩。非磁性衬底的轨道霍尔效应。就这样 我们使用密度泛函理论评估扭矩的来源,有效地捕获了电子结构对这些量的影响。我们将形式论应用于两个不同的磁性双层Fe / W(110)和Ni / W(110),选择它们的目的是使W中的轨道和自旋霍尔效应具有相反的符号,并产生自旋和轨道介导的转矩可以互相竞争。我们发现,虽然W的自旋霍尔效应引起的自旋转矩是Fe / W(110)中电流感应转矩的主导机制,而Ni / W(110)中的主导机制是源自于W / S的轨道转矩。非磁性衬底的轨道霍尔效应。就这样 选择它们,使得W中的轨道和自旋霍尔效应具有相反的符号,并且所产生的自旋和轨道介导的扭矩可以相互竞争。我们发现,虽然W的自旋霍尔效应引起的自旋转矩是Fe / W(110)中电流感应转矩的主导机制,而Ni / W(110)中的主导机制是源自于W / S的轨道转矩。非磁性衬底的轨道霍尔效应。就这样 选择它们,使得W中的轨道和自旋霍尔效应具有相反的符号,并且所产生的自旋和轨道介导的扭矩可以相互竞争。我们发现,虽然W的自旋霍尔效应引起的自旋转矩是Fe / W(110)中电流感应转矩的主导机制,而Ni / W(110)中的主导机制是源自于W / S的轨道转矩。非磁性衬底的轨道霍尔效应。就这样 Ni / W(110)的主要机理是源自非磁性衬底轨道霍尔效应的轨道转矩。就这样 Ni / W(110)的主要机理是源自非磁性衬底轨道霍尔效应的轨道转矩。就这样在两个系统中,总转矩的有效自旋霍尔角为负和正。我们的预测可以在中性清洁占主导地位的中等清洁样本中通过实验确定。这清楚地表明,我们的形式主义是研究自旋轨道耦合系统中角动量传递动力学的理想选择,因为它通过将自旋和轨道的自由度自然地纳入等高点而超出了“自旋电流图”。我们的计算表明,除了自旋和轨道转矩外,在两种材料系统中铁磁体中的其他贡献(例如界面转矩和自感应异常转矩)均不可忽略。
更新日期:2020-09-14
down
wechat
bug