当前位置: X-MOL 学术Nat. Phys. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Chemotaxis under flow disorder shapes microbial dispersion in porous media
Nature Physics ( IF 17.6 ) Pub Date : 2020-09-14 , DOI: 10.1038/s41567-020-1002-x
Pietro de Anna , Amir A. Pahlavan , Yutaka Yawata , Roman Stocker , Ruben Juanes

Natural soils are host to a high density1 and diversity2 of microorganisms, and even deep-earth porous rocks provide a habitat for active microbial communities3. In these environments, microbial transport by disordered flows is relevant for a broad range of natural and engineered processes, from biochemical cycling to remineralization and bioremediation4,5,6,7. Yet, how bacteria are transported and distributed in the subsurface as a result of the disordered flow and the associated chemical gradients characteristic of porous media has remained poorly understood, in part because studies have so far focused on steady, macroscale chemical gradients8,9,10. Here, we use a microfluidic model system that captures flow disorder and chemical gradients at the pore scale to quantify the transport and dispersion of the soil-dwelling bacterium Bacillus subtilis in porous media. We observe that chemotaxis strongly modulates the persistence of bacteria in low-flow regions of the pore space, resulting in a 100% increase in their dispersion coefficient. This effect stems directly from the strong pore-scale gradients created by flow disorder and demonstrates that the microscale interplay between bacterial behaviour and pore-scale disorder can impact the macroscale dynamics of biota in the subsurface.



中文翻译:

流动性紊乱下的趋化作用塑造微生物在多孔介质中的分散

天然土壤是微生物的高密度1和多样性2的宿主,甚至深层多孔岩石也为活跃的微生物群落3提供了栖息地。在这些环境中,通过无序流动的微生物运输与自然和工程化过程的广泛范围相关,从生化循环到再矿化和生物修复4,5,6,7。然而,由于水流紊乱以及多孔介质的相关化学梯度特性,细菌如何在地下运输和分布仍知之甚少,部分原因是迄今为止,研究主要集中在稳定的宏观化学梯度[ 8,9], 10。在这里,我们使用一种微流体模型系统,该系统捕获了孔尺度上的流动紊乱和化学梯度,以量化土壤细菌枯草芽孢杆菌在多孔介质中的运输和分散。我们观察到趋化作用强烈地调节了细菌在孔空间低流量区域中的持久性,导致其分散系数提高了100%。这种效应直接源于流动紊乱产生的强大的孔尺度梯度,表明细菌行为和孔尺度紊乱之间的微观相互作用可影响地下生物群的宏观动力学。

更新日期:2020-09-14
down
wechat
bug