当前位置: X-MOL 学术Nat. Phys. › 论文详情
Chemotaxis under flow disorder shapes microbial dispersion in porous media
Nature Physics ( IF 19.256 ) Pub Date : 2020-09-14 , DOI: 10.1038/s41567-020-1002-x
Pietro de Anna; Amir A. Pahlavan; Yutaka Yawata; Roman Stocker; Ruben Juanes

Natural soils are host to a high density1 and diversity2 of microorganisms, and even deep-earth porous rocks provide a habitat for active microbial communities3. In these environments, microbial transport by disordered flows is relevant for a broad range of natural and engineered processes, from biochemical cycling to remineralization and bioremediation4,5,6,7. Yet, how bacteria are transported and distributed in the subsurface as a result of the disordered flow and the associated chemical gradients characteristic of porous media has remained poorly understood, in part because studies have so far focused on steady, macroscale chemical gradients8,9,10. Here, we use a microfluidic model system that captures flow disorder and chemical gradients at the pore scale to quantify the transport and dispersion of the soil-dwelling bacterium Bacillus subtilis in porous media. We observe that chemotaxis strongly modulates the persistence of bacteria in low-flow regions of the pore space, resulting in a 100% increase in their dispersion coefficient. This effect stems directly from the strong pore-scale gradients created by flow disorder and demonstrates that the microscale interplay between bacterial behaviour and pore-scale disorder can impact the macroscale dynamics of biota in the subsurface.

更新日期:2020-09-14

 

全部期刊列表>>
物理学研究前沿热点精选期刊推荐
科研绘图
欢迎报名注册2020量子在线大会
化学领域亟待解决的问题
材料学研究精选新
GIANT
自然职场线上招聘会
ACS ES&T Engineering
ACS ES&T Water
屿渡论文,编辑服务
阿拉丁试剂right
张晓晨
田蕾蕾
李闯创
刘天飞
隐藏1h前已浏览文章
课题组网站
新版X-MOL期刊搜索和高级搜索功能介绍
ACS材料视界
天合科研
x-mol收录
X-MOL
清华大学
廖矿标
陈永胜
试剂库存
down
wechat
bug