当前位置: X-MOL 学术Adv. Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
The Key Role of Intrinsic Lifetime Dynamics from Upconverting Nanosystems in Multiemission Particle Velocimetry.
Advanced Materials ( IF 27.4 ) Pub Date : 2020-09-13 , DOI: 10.1002/adma.202002266
Gabriella Tessitore 1 , Steven L Maurizio 1 , Tarek Sabri 1 , Cameron D Skinner 1 , John A Capobianco 1
Affiliation  

Evaluation of particle dynamics at the nano‐ and microscale poses a challenge to the development of novel velocimetry techniques. Established optical methods implement external or internal calibrations of the emission profiles by varying the particle velocity and are limited to specific experimental conditions. The proposed multiemission particle velocimetry approach aims to introduce a new concept for a luminescent probe, which guarantees accurate velocity measurements at the microscale, independent of the particle concentration or experimental setup, and without need for calibration. The simplicity of these analyses relies on the intrinsic luminescence dynamics of core–shell upconverting nanoparticles. Upon excitation with a focused near‐infrared pulsed laser, the nanoparticle emits photons at different wavelengths. The time interval between emissions from different excited states is independent of the local environment or particle velocity. The velocity of the particles is calculated by measuring the distance between the maxima of two different emissions and dividing it by the known difference in luminescence lifetimes. This method is demonstrated using simple digital imaging of nanoparticles flowing in 75–150 µm diameter capillaries. Using this novel approach typically results in a relative standard deviation of the experimental velocities of 5% or lower without any calibration.

中文翻译:

上转换纳米系统的内在生命周期动力学在多发射粒子测速中的关键作用。

在纳米和微米尺度上评估粒子动力学对新型测速技术的发展提出了挑战。既定的光学方法通过改变粒子速度来实现发射轮廓的外部或内部校准,并且局限于特定的实验条件。提出的多发射粒子测速方法旨在为发光探针引入一个新概念,该概念可确保在微米级进行准确的速度测量,而与粒子浓度或实验设置无关,并且无需校准。这些分析的简单性取决于核-壳上转换纳米粒子的固有发光动力学。在用聚焦的近红外脉冲激光激发后,纳米粒子发射不同波长的光子。不同激发态发射之间的时间间隔与局部环境或粒子速度无关。通过测量两种不同发射的最大值之间的距离并将其除以已知的发光寿命差异来计算粒子的速度。通过对直径为75-150 µm的毛细管中流动的纳米颗粒进行简单的数字成像,可以证明该方法。使用这种新颖的方法通常会导致实验速度的相对标准偏差为5%或更低,而无需任何校准。通过对直径为75-150 µm的毛细管中流动的纳米粒子进行简单的数字成像,可以证明该方法。使用这种新颖的方法通常会导致实验速度的相对标准偏差为5%或更低,而无需任何校准。通过对直径为75-150 µm的毛细管中流动的纳米粒子进行简单的数字成像,可以证明该方法。使用这种新颖的方法通常会导致实验速度的相对标准偏差为5%或更低,而无需任何校准。
更新日期:2020-10-20
down
wechat
bug