当前位置: X-MOL 学术Gas Sci. Eng. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Thermochemical Acid Fracturing of Tight and Unconventional Rocks: Experimental and Modeling Investigations
Gas Science and Engineering ( IF 5.285 ) Pub Date : 2020-11-01 , DOI: 10.1016/j.jngse.2020.103606
Zeeshan Tariq , Murtada Saleh Aljawad , Mohamed Mahmoud , Abdulazeez Abdulraheem , Ayman R. Al-Nakhli

Abstract The exploitation of unconventional formations requires propped hydraulic fracturing treatments. Propped fracturing is an expensive process that usually suffers from operational challenges. In this study, a new technology is proposed which targets implementing thermochemical fluids to stimulate unconventional formations. These fluids release large pressure pulses upon a reaction that creates networks of cracks along the fracture. Triggering thermochemical fluids with acid creates differential etching along the fracture surfaces due to the acid/rock dissolution. The new technology was tested experimentally through coreflooding on Indiana limestone and Kentucky sandstone samples and through breakdown pressure experiments on Eagle Ford shale samples. The breakdown pressure of the Eagle Ford shale samples was reduced from 2400 to 900 pisa using thermochemical fluids triggered with acid. It was also observed that the acid triggered thermochemical fluids could maintain the permeability of the fractures at high closure stresses due to the acid/rock dissolution. A laboratory and field-scale models were also developed in this study to understand thermochemical reactions. The laboratory-scale model could capture the pressure pulses generated experimentally and the system temperature. The field-scale model was then used to understand the thermochemical reactive transport in a hydraulic fracture. The model showed that thermochemical concentration is the most significant parameter in controlling the temperature and pressure magnitudes in the field.

中文翻译:

致密和非常规岩石的热化学酸压裂:实验和建模研究

摘要 非常规地层的开采需要支撑水力压裂处理。支撑压裂是一个昂贵的过程,通常会遇到操作挑战。在这项研究中,提出了一种新技术,其目标是实施热化学流体来刺激非常规地层。这些流体在产生沿裂缝的裂缝网络的反应中释放出大的压力脉冲。由于酸/岩石溶解,用酸触发热化学流体会沿着裂缝表面产生不同的蚀刻。通过对印第安纳州石灰岩和肯塔基州砂岩样本进行岩心驱替,以及对 Eagle Ford 页岩样本进行击穿压力实验,对新技术进行了实验测试。使用酸引发的热化学流体将 Eagle Ford 页岩样品的击穿压力从 2400 比萨降低到 900 比萨。还观察到,由于酸/岩石溶解,酸引发的热化学流体可以在高闭合应力下保持裂缝的渗透性。本研究还开发了实验室和现场规模模型,以了解热化学反应。实验室规模的模型可以捕获实验产生的压力脉冲和系统温度。然后使用现场比例模型来了解水力压裂中的热化学反应输运。该模型表明,热化学浓度是控制现场温度和压力大小的最重要参数。还观察到,由于酸/岩石溶解,酸引发的热化学流体可以在高闭合应力下保持裂缝的渗透性。本研究还开发了实验室和现场规模模型,以了解热化学反应。实验室规模的模型可以捕获实验产生的压力脉冲和系统温度。然后使用现场比例模型来了解水力压裂中的热化学反应输运。该模型表明,热化学浓度是控制现场温度和压力大小的最重要参数。还观察到,由于酸/岩石溶解,酸引发的热化学流体可以在高闭合应力下保持裂缝的渗透性。本研究还开发了实验室和现场规模模型,以了解热化学反应。实验室规模的模型可以捕获实验产生的压力脉冲和系统温度。然后使用现场比例模型来了解水力压裂中的热化学反应输运。该模型表明,热化学浓度是控制现场温度和压力大小的最重要参数。本研究还开发了实验室和现场规模模型,以了解热化学反应。实验室规模的模型可以捕获实验产生的压力脉冲和系统温度。然后使用现场比例模型来了解水力压裂中的热化学反应输运。该模型表明,热化学浓度是控制现场温度和压力大小的最重要参数。本研究还开发了实验室和现场规模模型,以了解热化学反应。实验室规模的模型可以捕获实验产生的压力脉冲和系统温度。然后使用现场比例模型来了解水力压裂中的热化学反应输运。该模型表明,热化学浓度是控制现场温度和压力大小的最重要参数。
更新日期:2020-11-01
down
wechat
bug