当前位置: X-MOL 学术Ann. Biomed. Eng. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
3D Finite Element Modeling of Blast Wave Transmission from the External Ear to Cochlea.
Annals of Biomedical Engineering ( IF 3.0 ) Pub Date : 2020-09-14 , DOI: 10.1007/s10439-020-02612-y
Marcus A Brown 1 , Xiao D Ji 1 , Rong Z Gan 1, 2
Affiliation  

As an organ that is sensitive to pressure changes, the ear is often damaged when a person is subjected to blast exposures resulting in hearing loss due to tissue damage in the middle ear and cochlea. While observation of middle ear damage is non-invasive, examining the damage to the cochlea is difficult to quantify. Previous works have modeled the cochlear response often when subjected to an acoustic pressure input, but the inner ear mechanics have rarely been studied when the ear is exposed to a blast wave. In this study we aim to develop a finite element (FE) model of the entire ear, particularly the cochlea, for predicting the blast wave transmission from the ear canal to cochlea. We utilized a FE model of the ear, which includes the ear canal, middle ear, and uncoiled two-chambered cochlea, to simulate the cochlear response to blast overpressure (BOP) at the entrance of the ear canal with ANSYS Mechanical and Fluent in a fluid–structure interface coupled analysis in the time domain. This model was developed based on previous middle and inner ear models, and the cochlea was remeshed to improve BOP simulation performance. The FE model was validated using experimentally measured blast pressure transduction from the ear canal to the middle ear and cochlea in human cadaveric temporal bones. Results from the FE model showed significant displacements of the tympanic membrane, middle ear ossicles, and basilar membrane (BM). The stapes footplate displacement was observed to be as high as 60 µm, far exceeding the displacement during normal acoustic stimulation, when the 30 kPa (4.35 psi, 183 dB (SPL), Sound Pressure Level) of BOP was applied at the ear canal entrance. The large stapes movement caused pressures in the cochlea to exceed the physiological pressure level [< 10 Pa, 120 dB (SPL)] at a peak of 49.9 kPa, and the BM displacement was on the order of microns with a maximum displacement of 26.4 µm. The FE model of the entire human ear developed in this study provides a computational tool for prediction of blast wave transmission from the ear canal to cochlea and the future applications for assisting the prevention, diagnosis, and treatment of blast-induced hearing loss.



中文翻译:

从外耳到耳蜗的冲击波传输的 3D 有限元建模。

作为对压力变化敏感的器官,当一个人受到冲击波暴露时,耳朵经常会受损,导致中耳和耳蜗的组织损伤导致听力损失。虽然观察中耳损伤是非侵入性的,但检查耳蜗的损伤很难量化。以前的工作经常对受到声压输入时的耳蜗响应进行建模,但是当耳朵暴露在冲击波中时,很少研究内耳力学。在这项研究中,我们旨在开发整个耳朵(尤其是耳蜗)的有限元 (FE) 模型,用于预测从耳道到耳蜗的冲击波传输。我们使用了耳朵的 FE 模型,其中包括耳道、中耳和展开的两腔耳蜗,使用 ANSYS Mechanical 和 Fluent 在时域中的流固耦合分析中模拟耳蜗对耳道入口爆炸超压 (BOP) 的响应。该模型是在之前的中耳和内耳模型的基础上开发的,并重新划分耳蜗以提高 BOP 模拟性能。FE 模型使用实验测量的爆炸压力转导从耳道到中耳和人类尸体颞骨耳蜗进行了验证。FE 模型的结果显示鼓膜、中耳听小骨和基底膜 (BM) 发生显着位移。观察到镫骨足板位移高达 60 该模型是在之前的中耳和内耳模型的基础上开发的,并重新划分耳蜗以提高 BOP 模拟性能。FE 模型使用实验测量的爆炸压力转导从耳道到中耳和人类尸体颞骨耳蜗进行了验证。FE 模型的结果显示鼓膜、中耳听小骨和基底膜 (BM) 发生显着位移。观察到镫骨足板位移高达 60 该模型是在之前的中耳和内耳模型的基础上开发的,并重新划分耳蜗以提高 BOP 模拟性能。FE 模型使用实验测量的爆炸压力转导从耳道到中耳和人类尸体颞骨耳蜗进行了验证。FE 模型的结果显示鼓膜、中耳听小骨和基底膜 (BM) 发生显着位移。观察到镫骨足板位移高达 60 FE 模型的结果显示鼓膜、中耳听小骨和基底膜 (BM) 发生显着位移。观察到镫骨足板位移高达 60 FE 模型的结果显示鼓膜、中耳听小骨和基底膜 (BM) 发生显着位移。观察到镫骨足板位移高达 60 µ m,远远超过正常声学刺激期间的位移,当 BOP 的 30 kPa(4.35 psi,183 dB (SPL),声压级)应用于耳道入口时。大镫骨运动导致耳蜗压力超过生理压力水平 [< 10 Pa, 120 dB (SPL)],峰值为 49.9 kPa,BM 位移在微米量级,最大位移为 26.4  µ米。本研究开发的整个人耳的 FE 模型为预测从耳道到耳蜗的冲击波传输提供了一种计算工具,并为辅助冲击性听力损失的预防、诊断和治疗提供了未来的应用。

更新日期:2020-09-14
down
wechat
bug