当前位置: X-MOL 学术Mater. Today Nano › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Cellular nano-transistor: An electronic-interface between nanoscale semiconductors and biological cells
Materials Today Nano ( IF 8.2 ) Pub Date : 2019-10-22 , DOI: 10.1016/j.mtnano.2019.100063
S. Kim , B. Keisham , V. Berry

A biocellular transistor transduces the biochemical activity of an interfaced cell into an electrical signal. Interfacial coupling of microcellular species with semiconducting nanomaterials in a cellular nano-transistor enables the confinement of transduced charge-carriers to one or two dimensions and at the bio/nano-interface, resulting in a highly sensitive change in carrier density. In contrast, conventional semiconductors allow carrier-flow in all three dimensions due to the lack of confinement, despite the sensitivity reducing away from the interface. Further, the semiconducting nanomaterials offer a large surface area, which enables compatible interface with microscale cells. This review presents the recent developments in cellular nano-transistors, their constructs, the cellular function and types, applicable nanoscale semiconductors, the interaction at the cell/nanomaterial interface, and the overall signal transduction mechanism. With millions of biological cells each having their own distinct functionalities, such as cellular response to chemicals, light, temperature, mechanical stress, electric stimuli; and enzymatic production of electrons; and numerous semiconducting nanomaterials to form interfaces with, the development of biocellular nano-transistors are set to evolve into an explosion of multifunctional devices, revolutionizing the field of bio-electronics



中文翻译:

细胞纳米晶体管:纳米半导体和生物细胞之间的电子接口

生物细胞晶体管将界面细胞的生化活性转化为电信号。细胞纳米晶体管中微细胞物质与半导体纳米材料的界面偶联使转导的电荷-载流子限制在一维或二维以及生物/纳米界面,从而导致载流子密度发生高度敏感的变化。相反,常规半导体由于缺乏限制而允许所有三个维度上的载流子流动,尽管灵敏度远离界面减小。此外,半导体纳米材料提供了大的表面积,这使得能够与微米级电池兼容的界面。这篇评论介绍了细胞纳米晶体管的最新进展,它们的结构,细胞功能和类型,适用的纳米级半导体,细胞/纳米材料界面的相互作用以及整个信号转导机制。数百万个生物细胞各自具有各自不同的功能,例如细胞对化学物质,光,温度,机械应力,电刺激的反应;和酶的电子产生;以及与之形成界面的多种半导体纳米材料,生物细胞纳米晶体管的发展将演变为多功能设备的爆炸式增长,彻底改变了生物电子学领域

更新日期:2019-10-22
down
wechat
bug