当前位置: X-MOL 学术J. Materiomics › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
High-throughput data-driven interface design of high-energy-density polymer nanocomposites
Journal of Materiomics ( IF 9.4 ) Pub Date : 2020-05-03 , DOI: 10.1016/j.jmat.2020.04.006
Zhong-Hui Shen , Yang Shen , Xiao-Xing Cheng , Han-Xing Liu , Long-Qing Chen , Ce-Wen Nan

Understanding the interface effect in dielectric nanocomposites is crucial to the enhancement of their performance. In this work, a data-driven interface design strategy based on high-throughput phase-field simulations is developed to study the interface effect and then optimize the permittivity and breakdown strength of nanocomposites. Here, we use two microscopic features that are closely related to the macroscopic dielectric properties, the thickness and permittivity of the interface phases, to evaluate the role of interfaces in experimental configuration, and thus provide quantitative design schemes for the interfacial phases. Taking the polyvinyl difluoride (PVDF)single bondBaTiO3 nanocomposite as an example, the calculation results demonstrate that the interfacial polarization could account for up to 83.6% of the increase in the experimentally measured effective permittivity of the nanocomposite. Based on the interface optimized strategy, a maximum enhancement of ∼156% in the energy density could be achieved by introducing an interface phase with d/r = 0.55 and εinterface/εfiller=0.036, compared to the pristine nanocomposite. Overall, the present work not only provides fundamental understanding of the interface effect in dielectric nanocomposites, but also establishes a powerful data-driven interface design framework for such materials that could also be easily generalized and applied to study interface issues in other functional nanocomposites, such as solid electrolytes and thermoelectrics.



中文翻译:

高能量密度聚合物纳米复合材料的高通量数据驱动界面设计

了解介电纳米复合材料的界面效应对于提高其性能至关重要。在这项工作中,开发了一种基于高通量相场模拟的数据驱动界面设计策略,以研究界面效应,然后优化纳米复合材料的介电常数和击穿强度。在这里,我们使用与微观介电特性密切相关的两个微观特征,即界面相的厚度和介电常数,来评估界面在实验构型中的作用,从而提供界面相的定量设计方案。服用聚二氟乙烯(PVDF)单键BaTiO 3以纳米复合材料为例,计算结果表明,界面极化可占实验测量的纳米复合材料有效介电常数增加的83.6%。根据界面优化策略,通过引入d / r = 0.55的界面相可以最大提高能量密度约156%。ε接口/ε填料=0.036,与原始的纳米复合材料相比。总的来说,当前的工作不仅提供了对介电纳米复合材料中界面效应的基本理解,而且为此类材料建立了强大的数据驱动界面设计框架,该界面也可以很容易地推广并应用于研究其他功能纳米复合材料中的界面问题,例如作为固体电解质和热电材料。

更新日期:2020-05-03
down
wechat
bug