当前位置: X-MOL 学术Biocatal. Biotransform. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Cyanide-free synthesis of an aromatic nitrile from a biorenewable-based aldoxime: Development and application of a recombinant aldoxime dehydratase as a biocatalyst
Biocatalysis and Biotransformation ( IF 1.4 ) Pub Date : 2019-05-23 , DOI: 10.1080/10242422.2019.1591376
Ji Eun Choi 1, 2 , Suguru Shinoda 2 , Risa Inoue 2 , Daijun Zheng 2 , Harald Gröger 1 , Yasuhisa Asano 2
Affiliation  

Abstract An Escherichia coli host microorganism was used for the production of the aldoxime dehydratase from Rhodococcus sp. YH3-3 (OxdYH3-3), which showed good activity toward aromatic aldoximes. Biotransformation of aromatic aldoximes to nitriles was studied using this recombinant biocatalyst OxdYH3-3, exemplified in particular for the synthesis of biorenewable-based 2-furonitrile. The gene encoding for the enzyme OxdYH3-3 was cloned to a histidine tag-containing overexpression vector pET15b, pET22b and pET28b and transformed to E. coli BL21 (DE3) and BL21-Codonplus (DE3). The preferred overexpression was achieved when utilizing the strain BL21 (DE3)/pET28b. Apart from this expression system, however, an overexpression was not observed. The bioconversion transforming E-pyridine-3-aldoxime into 3-cyanopyridine was dependent on the overexpression level of OxdYH3-3. The initial activity for 3 h of BL21 (DE3)/pET28b-OxdYH3-3 toward E-2-furfurylaldoxime (75%) was 13% lower compared to the initial activity toward E-pyridine-3-aldoxime (88%). Even though the initial conversion was lower, BL21 (DE3)/pET28b-OxdYH3-3 showed full conversion of E-2-furfurylaldoxime under formation of 2-furonitrile after 9 h of reaction time. The new recombinant enzyme OxdYH3-3 was successfully overexpressed and used for the biocatalytic synthesis of the pharmaceutical intermediate 2-furonitrile. The enzyme OxdYH3-3 showed a high catalytic activity for aromatic aldoximes, which enables a perspective for an efficient production of aromatic nitriles.

中文翻译:

从生物可再生醛肟无氰合成芳香腈:重组醛肟脱水酶作为生物催化剂的开发和应用

摘要 使用大肠杆菌宿主微生物从红球菌属生产醛肟脱水酶。YH3-3 (OxdYH3-3),对芳香醛肟显示出良好的活性。使用这种重组生物催化剂 OxdYH3-3 研究了芳香醛肟向腈的生物转化,特别是用于合成基于生物可再生的 2-呋喃腈。将编码酶 OxdYH3-3 的基因克隆到含有组氨酸标签的过表达载体 pET15b、pET22b 和 pET28b 中,并转化到大肠杆菌BL21 (DE3) 和 BL21-Codonplus (DE3) 中。当使用菌株 BL21 (DE3)/pET28b 时实现了首选的过度表达。然而,除了该表达系统之外,未观察到过表达。将 E-pyridine-3-aldoxime 转化为 3-cyanopyridine 的生物转化取决于 OxdYH3-3 的过表达水平。BL21 (DE3)/pET28b-OxdYH3-3 对 E-2-糠醛肟 (75%) 的 3 小时初始活性比对 E-吡啶-3-醛肟的初始活性 (88%) 低 13%。尽管初始转化率较低,但 BL21 (DE3)/pET28b-OxdYH3-3 在反应 9 小时后显示出 E-2-糠醛肟在形成 2-呋喃腈的情况下完全转化。新的重组酶OxdYH3-3被成功过表达并用于医药中间体2-呋喃腈的生物催化合成。酶 OxdYH3-3 对芳香醛肟显示出高催化活性,这为有效生产芳香腈提供了前景。BL21 (DE3)/pET28b-OxdYH3-3 对 E-2-糠醛肟 (75%) 的 3 小时初始活性比对 E-吡啶-3-醛肟的初始活性 (88%) 低 13%。尽管初始转化率较低,但 BL21 (DE3)/pET28b-OxdYH3-3 在反应 9 小时后显示出 E-2-糠醛肟在形成 2-呋喃腈的情况下完全转化。新的重组酶OxdYH3-3被成功过表达并用于医药中间体2-呋喃腈的生物催化合成。酶 OxdYH3-3 对芳香醛肟显示出高催化活性,这为有效生产芳香腈提供了前景。BL21 (DE3)/pET28b-OxdYH3-3 对 E-2-糠醛肟 (75%) 的 3 小时初始活性比对 E-吡啶-3-醛肟的初始活性 (88%) 低 13%。尽管初始转化率较低,但 BL21 (DE3)/pET28b-OxdYH3-3 在反应 9 小时后显示出 E-2-糠醛肟在形成 2-呋喃腈的情况下完全转化。新的重组酶OxdYH3-3被成功过表达并用于医药中间体2-呋喃腈的生物催化合成。酶 OxdYH3-3 对芳香醛肟显示出高催化活性,这为有效生产芳香腈提供了前景。BL21 (DE3)/pET28b-OxdYH3-3 在反应 9 小时后显示出 E-2-糠醛肟完全转化,形成 2-呋喃腈。新的重组酶OxdYH3-3成功过表达并用于医药中间体2-呋喃腈的生物催化合成。酶 OxdYH3-3 对芳香醛肟显示出高催化活性,这为有效生产芳香腈提供了前景。BL21 (DE3)/pET28b-OxdYH3-3 在反应 9 小时后显示出 E-2-糠醛肟完全转化,形成 2-呋喃腈。新的重组酶OxdYH3-3被成功过表达并用于医药中间体2-呋喃腈的生物催化合成。酶 OxdYH3-3 对芳香醛肟显示出高催化活性,这为有效生产芳香腈提供了前景。
更新日期:2019-05-23
down
wechat
bug