当前位置: X-MOL 学术Plant J. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Gene co-expression analysis reveals transcriptome divergence between wild and cultivated chickpea under drought stress.
The Plant Journal ( IF 6.2 ) Pub Date : 2020-09-13 , DOI: 10.1111/tpj.14988
Susan M Moenga 1 , Yunpeng Gai 1, 2 , Noelia Carrasquilla-Garcia 1 , Laura M Perilla-Henao 1 , Douglas R Cook 1
Affiliation  

Ancestral adaptations in crop wild relatives can provide a genetic reservoir for crop improvement. Here we document physiological changes to mild and severe drought stress, and the associated transcriptome dynamics in both wild and cultivated chickpea. Over 60% of transcriptional changes were related to metabolism, indicating that metabolic plasticity is a core and conserved drought response. In addition, changes in RNA processing and protein turnover were predominant in the data, suggestive of broad restructuring of the chickpea proteome in response to drought. While 12% of the drought‐responsive transcripts have similar dynamics in cultivated and wild accessions, numerous transcripts had expression patterns unique to particular genotypes, or that distinguished wild from cultivated genotypes and whose divergence may be a consequence of domestication. These and other comparisons provide a transcriptional correlate of previously described species' genetic diversity, with wild accessions well differentiated from each other and from cultivars, and cultivars essentially indistinguishable at the broad transcriptome level. We identified metabolic pathways such as phenylpropanoid metabolism, and biological processes such as stomatal development, which are differentially regulated across genotypes with potential consequences on drought tolerance. These data indicate that wild Cicer reticulatum may provide both conserved and divergent mechanisms as a resource in breeding for drought tolerance in cultivated chickpea.

中文翻译:

基因共表达分析揭示了野生和栽培鹰嘴豆在干旱胁迫下的转录组差异。

作物野生近缘种的祖先适应可以为作物改良提供遗传资源。在这里,我们记录了轻度和重度干旱胁迫的生理变化,以及野生和栽培鹰嘴豆的相关转录组动态。超过60%的转录变化与新陈代谢有关,这表明新陈代谢的可塑性是核心且守恒的干旱反应。此外,RNA加工和蛋白质更新的变化在数据中占主导地位,表明鹰嘴豆蛋白质组响应干旱而广泛地重组。尽管12%的干旱响应转录本在栽培和野生种中具有相似的动态变化,但许多转录本具有特定基因型所独有的表达模式,或与野生基因型区别开来的物种,或它们的差异可能是驯化的结果。这些比较和其他比较提供了先前描述的物种遗传多样性的转录相关性,其中野生种彼此之间以及与栽培种之间有很好的区别,而栽培种在广泛的转录组水平上基本无法区分。我们确定了代谢途径(例如苯丙氨酸代谢)和生物过程(例如气孔发育),这些过程在不同基因型之间差异调节,可能对干旱耐受性产生潜在影响。这些数据表明野生 在宽泛的转录组水平上基本上没有区别。我们确定了代谢途径(例如苯丙氨酸代谢)和生物过程(例如气孔发育),这些过程在不同基因型之间差异调节,可能对干旱耐受性产生潜在影响。这些数据表明野生 在宽泛的转录组水平上基本上没有区别。我们确定了代谢途径(例如苯丙氨酸代谢)和生物过程(例如气孔发育),这些过程在不同基因型之间差异调节,可能对干旱耐受性产生潜在影响。这些数据表明野生网纹柑桔可以提供保守和发散的机制作为栽培鹰嘴豆抗旱育种的资源。
更新日期:2020-09-13
down
wechat
bug