当前位置: X-MOL 学术Spectrochim. Acta B. At. Spectrosc. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Determination of activation energies for atomization of gold nanoparticles in graphite furnace atomic absorption spectrometry
Spectrochimica Acta Part B: Atomic Spectroscopy ( IF 3.2 ) Pub Date : 2020-11-01 , DOI: 10.1016/j.sab.2020.105976
Anja Brandt , Beatriz Gómez-Nieto , Jens Friedland , Robert Güttel , Kerstin Leopold

Abstract Graphite furnace atomic absorption spectrometry (GFAAS) has been proposed as an efficient tool to differentiate metal ions from nanoparticles (NPs) and estimate the size of these particles. This is the first study in which atom release orders and activation energies (Ea) for ionic Au and Au NPs were calculated by constructing Arrhenius-type plots from absorbance signals. Ionic Au atomization is governed by a two-precursor mechanism. For the first precursor no release order can be determined, but an estimated activation energy of 211 ± 26 kJ mol−1 corresponding to atomization from small atomic clusters was found. A release order of 0.3 shows that larger in-situ formed aggregates are the second precursor. With varying heating rates, the ratio of the precursors is altered resulting in different shapes of the absorbance signals. In contrast, the atomization of Au NPs follows a one-precursor atomization mechanism. A “pseudo-first” atom release order was found for all NP sizes and atomization behavior is similar for each heating rate. Ea of Au NP smaller than 20 nm increases with increasing size, while for larger NP it is constant and approaches the heat of sublimation of the bulk material. On the basis of the different atomization mechanisms, discrimination of ionic Au and Au NPs, as well as sizing of nanoparticles seems to be independent of used atomization temperature program, i.e. primarily the heating rate.

中文翻译:

石墨炉原子吸收光谱法测定金纳米粒子原子化的活化能

摘要 石墨炉原子吸收光谱法 (GFAAS) 已被提议作为区分金属离子与纳米粒子 (NP) 并估计这些粒子大小的有效工具。这是第一项研究,其中通过从吸光度信号构建 Arrhenius 型图来计算离子 Au 和 Au NPs 的原子释放顺序和活化能 (Ea)。离子金原子化由两个前驱体机制控制。对于第一个前驱体,无法确定释放顺序,但发现估计的活化能为 211 ± 26 kJ mol-1,对应于小原子团的原子化。0.3 的释放顺序表明较大的原位形成的聚集体是第二个前体。随着加热速率的变化,前体的比例会发生变化,从而导致吸光度信号的不同形状。相比之下,Au NPs 的原子化遵循单前体原子化机制。对于所有 NP 尺寸都发现了“伪优先”原子释放顺序,并且每个加热速率的原子化行为都相似。小于 20 nm 的 Au NP 的 Ea 随着尺寸的增加而增加,而对于较大的 NP,它是恒定的并且接近大块材料的升华热。基于不同的雾化机制,离子 Au 和 Au NPs 的区分以及纳米颗粒的大小似乎与使用的雾化温度程序无关,即主要是加热速率。而对于较大的 NP,它是恒定的并且接近散装材料的升华热。基于不同的雾化机制,离子 Au 和 Au NPs 的区分以及纳米颗粒的大小似乎与使用的雾化温度程序无关,即主要是加热速率。而对于较大的 NP,它是恒定的并且接近散装材料的升华热。基于不同的雾化机制,离子 Au 和 Au NPs 的区分以及纳米颗粒的大小似乎与使用的雾化温度程序无关,即主要是加热速率。
更新日期:2020-11-01
down
wechat
bug