当前位置: X-MOL 学术Int. J. Hydrogen Energy › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
A comparison on the dynamical performance of a proton exchange membrane fuel cell (PEMFC) with traditional serpentine and an open pore cellular foam material flow channel
International Journal of Hydrogen Energy ( IF 8.1 ) Pub Date : 2020-09-12 , DOI: 10.1016/j.ijhydene.2020.08.199
F.N. Khatib , Tabbi Wilberforce , J. Thompson , A.G. Olabi

Minimising the pressure drop in flow channels, ensuring high efficiency and utilisation of open pore cellular foam (OPCF) material in place of a traditional serpentine channel are investigated in this work. The paper establishes novel mathematical model that takes into account the effect of pressure drop in the flow channel and compares the dynamics of a porous flow channel with those of the traditional serpentine flow channel. The performance of a Polymer Electrolyte Membrane fuel cell with porous foam flow channel is analysed under static and transient conditions. The fuel cell mass transport equations are used in the model that also takes into account the effect of varying the current on the stack temperature. The membrane water content and IV-curves are analysed and simulation results are presented based on the mathematical models of the proposed system using the MATLAB®/Simulink® environments. The effect of varying pore diameter, porosity, and the flow velocity on pressure drop are also investigated using sensitivity analysis. Due to the lower pressure drop provided by the uniform distribution of reactants in OPCF channel, an improvement of approximately 55% is observed in current density when compared with that of the serpentine channel under the same operating conditions. The investigation further concluded that a higher pore diameter can have a lower drop in pressure provided the flow velocity of the reactant does not exceed 6 m/s.



中文翻译:

质子交换膜燃料电池(PEMFC)与传统蛇纹石和开孔多孔泡沫材料流动通道的动力学性能比较

在这项工作中,研究了最小化流动通道中的压降,确保高效和利用开孔多孔泡沫(OPCF)材料代替传统的蛇形通道的方法。本文建立了一种新颖的数学模型,该模型考虑了流动通道中压降的影响,并将多孔流动通道的动力学与传统的蛇形流动通道的动力学进行了比较。在静态和瞬态条件下分析了具有多孔泡沫流动通道的聚合物电解质膜燃料电池的性能。模型中使用了燃料电池质量传输方程,该方程还考虑了改变电流对电池组温度的影响。在所建议系统的数学模型的基础上,使用MATLAB®/Simulink®环境分析膜的水分含量和IV曲线,并给出仿真结果。还使用敏感性分析研究了变化的孔径,孔隙率和流速对压降的影响。由于反应物在OPCF通道中的均匀分布所提供的较低的压降,与相同操作条件下的蛇形通道相比,电流密度提高了约55%。研究进一步得出结论,如果反应物的流速不超过6 m / s,则较大的孔径可以具有较低的压力降。并利用敏感性分析研究了流速对压降的影响。由于反应物在OPCF通道中的均匀分布所提供的较低的压降,与相同操作条件下的蛇形通道相比,电流密度提高了约55%。研究进一步得出结论,如果反应物的流速不超过6 m / s,则较大的孔径可以具有较低的压力降。并利用敏感性分析研究了流速对压降的影响。由于反应物在OPCF通道中的均匀分布所提供的较低的压降,与相同操作条件下的蛇形通道相比,电流密度提高了约55%。研究进一步得出结论,如果反应物的流速不超过6 m / s,则较大的孔径可以具有较低的压力降。

更新日期:2020-09-12
down
wechat
bug