当前位置: X-MOL 学术Adv. Mech. Eng. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Numerical simulation of reacting flow in the combustion chamber and study of the impact of turbulent diffusion coefficients
Advances in Mechanical Engineering ( IF 1.9 ) Pub Date : 2020-09-12 , DOI: 10.1177/1687814020954974
Evgenij Strokach 1 , Igor Borovik 1 , Fang Chen 2
Affiliation  

A methodology for combustion modeling with complex mixing and thermodynamic conditions, especially in thrusters, is still under development. The resulting flow and propulsion parameters strongly depend on the models used, especially on the turbulence model as it determines the mixing efficiency. In this paper, the effect of the sigma-type turbulent diffusion coefficients arriving in the diffusion term of the turbulence model is studied. This study was performed using complex modeling, considering the conjugate effect of several physical phenomena such as turbulence, chemical reactions, and radiation heat transfer. To consider the varying turbulent Prandtl, an algebraic model was implemented. An adiabatic steady diffusion Flamelet approach was used to model chemical reactions. The P1 differential model with a WSGG spectral model was used for radiation heat transfer. The gaseous oxygen (GOX) and methane (GCH4) operating thruster developed at the Chair of turbomachinery and Flight propulsion of the Technical University of Munich (TUM) is taken as a test case. The studies use the 3D RANS approach using the 60° sector as the modeling domain. The normalized and absolute pressures, the integral and segment averaged heat flux are compared to numerical results. The wall heat fluxes and pressure distributions show good agreement with the experimental data, while the turbulent diffusion coefficients mostly influence the heat flux.



中文翻译:

燃烧室内反应流的数值模拟及湍流扩散系数影响的研究

具有复杂混合和热力学条件的燃烧建模方法,特别是在推进器中,仍在开发中。产生的流量和推进参数在很大程度上取决于所使用的模型,尤其取决于湍流模型,因为它决定了混合效率。本文研究了sigma型湍流扩散系数到达湍流模型扩散项中的影响。这项研究是使用复杂的模型进行的,考虑了几种物理现象(例如湍流,化学反应和辐射传热)的共轭效应。为了考虑变化的湍流Prandtl,采用了代数模型。绝热稳态扩散火焰法用于模拟化学反应。具有WSGG光谱模型的P1微分模型用于辐射传热。慕尼黑工业大学(TUM)的涡轮机械和飞行推进系主任开发的气态氧气(GOX)和甲烷(GCH4)操作推进器作为测试用例。研究使用3D RANS方法,将60°扇区作为建模域。将归一化和绝对压力,积分和分段平均热通量与数值结果进行比较。壁的热通量和压力分布与实验数据吻合良好,而湍流扩散系数主要影响热通量。慕尼黑工业大学(TUM)的涡轮机械和飞行推进系主任开发的气态氧气(GOX)和甲烷(GCH4)操作推进器作为测试用例。研究使用3D RANS方法,将60°扇区作为建模域。将归一化和绝对压力,积分和分段平均热通量与数值结果进行比较。壁的热通量和压力分布与实验数据吻合良好,而湍流扩散系数主要影响热通量。慕尼黑工业大学(TUM)的涡轮机械和飞行推进系主任开发的气态氧气(GOX)和甲烷(GCH4)操作推进器作为测试用例。研究使用3D RANS方法,将60°扇区作为建模域。将归一化和绝对压力,积分和分段平均热通量与数值结果进行比较。壁的热通量和压力分布与实验数据吻合良好,而湍流扩散系数主要影响热通量。

更新日期:2020-09-12
down
wechat
bug