当前位置: X-MOL 学术Int. J. Hydrogen Energy › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Three-dimensional graphitic mesoporous carbon-doped carbon felt bioanodes enables high electric current production in microbial fuel cells
International Journal of Hydrogen Energy ( IF 8.1 ) Pub Date : 2020-09-12 , DOI: 10.1016/j.ijhydene.2020.08.207
Mohamed Mahmoud , K.M. El-Khatib

Microbial fuel cells (MFCs) represent a new approach that can simultaneously enhance the treatment of waste streams and generate electricity. Although MFCs represent a promising technology for renewable energy production, they have not been successfully scaled-up mainly due to the relatively-low electricity generation and high cost associated with MFCs operation. Here, we investigated whether graphitic mesoporous carbon (GMC) decoration of carbon felt would improve the conductivity and biocompatibility of carbon felt anodes, leading to higher biomass attachment and electricity generation in MFCs fed with an organic substrate. To test this hypothesis, we applied 3 different GMC loading (i.e., 2, 5, and 10 mg/cm2 of anode surface area) in MFCs compared to control MFCs (with pristine carbon felt electrodes). We observed that the internal resistances of modified anodes with GMC were 1.2–2.3-order of magnitude less than pristine carbon felt anode, leading to maximum power densities of 70.3, 33.3, and 9.8 mW/m2 for 10, 5, and 2 mg/cm2-doped anode, respectively compared to only 3.8 mW/m2 for the untreated carbon felt. High-throughput sequencing revealed that increasing the GMC loading rate was associated with enriching more robust anode-respiring bacteria (ARB) biofilm community. These results demonstrate that 3-D GMC-doped carbon felt anodes could be a potential alternative to other expensive metal-based electrodes for achieving high electric current densities in MFCs fed with organic substrates, such as wastewater. Most importantly, high electron transfer capability, strong chemical stability, low cost, and excellent mechanical strength of 3-D GMC-doped carbon felt open up new opportunities for scaling-up of MFCs using cheap and high-performance anodes.



中文翻译:

三维石墨介孔碳掺杂碳毡生物阳极可在微生物燃料电池中产生高电流

微生物燃料电池(MFC)代表了一种新方法,可以同时增强对废物流的处理并产生电能。尽管MFC代表了可再生能源生产的有前途的技术,但是由于MFC的运行相对较低的发电量和较高的成本,因此尚未成功地将它们放大。在这里,我们调查了碳毡的石墨中孔碳(GMC)装饰是否会改善碳毡阳极的电导率和生物相容性,从而导致在饲喂有机基质的MFC中产生更高的生物质附着力和发电量。为了验证该假设,我们应用了3种不同的GMC加载量(即2、5和10 mg / cm 2与对照MFC(带有原始碳毡电极)相比,MFC中的阳极表面积大为增加。我们观察到,采用GMC的改性阳极的内阻比原始碳毡阳极的内阻小1.2–2.3个数量级,导致10、5和2 mg的最大功率密度分别为70.3、33.3和9.8 mW / m 2。 / cm 2掺杂阳极,分别仅为3.8 mW / m 2用于未经处理的碳毡。高通量测序表明,增加GMC加载速率与富集更健壮的阳极呼吸细菌(ARB)生物膜群落有关。这些结果表明,掺杂3D GMC的碳毡阳极可以成为其他昂贵的基于金属的电极的潜在替代品,以在装有有机基质(如废水)的MFC中实现高电流密度。最重要的是,3-D GMC掺杂碳的高电子转移能力,强大的化学稳定性,低成本以及出色的机械强度为使用廉价,高性能阳极的MFCs的规模化生产提供了新的机遇。

更新日期:2020-11-02
down
wechat
bug