当前位置: X-MOL 学术Chem. Eng. Sci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Estimation of the dissipation rate of turbulent kinetic energy: a review
Chemical Engineering Science ( IF 4.7 ) Pub Date : 2021-01-01 , DOI: 10.1016/j.ces.2020.116133
Guichao Wang , Fan Yang , Ke Wu , Yongfeng Ma , Cheng Peng , Tianshu Liu , Lian-Ping Wang

Abstract A comprehensive literature review on the estimation of the dissipation rate of turbulent kinetic energy is presented to assess the current state of knowledge available in this area. Experimental techniques (hot wires, LDV, PIV and PTV) reported on the measurements of turbulent dissipation rate have been critically analyzed with respect to the velocity processing methods. Traditional hot wires and LDV are both a point-based measurement technique with high temporal resolution and Taylor’s frozen hypothesis is generally required to transfer temporal velocity fluctuations into spatial velocity fluctuations in turbulent flows. Multi probes of hot wires and multi points LDV could be used to measure velocity spatial gradients for a direct calculation of turbulent dissipation rate from its definition. Nevertheless, only PIV and PTV could provide simultaneous measurements of the distribution of turbulent dissipation rate in a turbulent field. These methods all suffer from the deficiency of spatial resolution as velocity measurements are required to resolve down to Kolmogorov scales for a strictly direct calculation of turbulent dissipation rate from fluctuating velocity gradients. To eliminate the necessity of resolving down to Kolmogorov scales, a large eddy simulation analogy and Smagorinsky model could be used for estimating the unresolved small scales, but Smagorinsky constant acts as an adjustment parameter at this stage. Different velocity processing methods are compared in the estimation of turbulent dissipation rate. The estimation of turbulent dissipation rate using structure function, energy spectrum and dimensional analysis methods could reduce the effects of low resolution, but it only provides temporal or spatial mean turbulent dissipation rate. Nevertheless, the field of turbulent dissipation rate, which is not distributed homogeneously, has intermittent spatio-temporal nature. The aim of this paper is to review the developments and limitations of the existing experimental techniques and different calculating methods and identify the future directions in successfully estimating turbulent dissipation rate in turbulent multiphase flows.

中文翻译:

湍动能耗散率的估计:综述

摘要 对湍动能耗散率的估计进行了全面的文献综述,以评估该领域现有知识的现状。对湍流耗散率测量报告的实验技术(热线、LDV、PIV 和 PTV)已经根据速度处理方法进行了批判性分析。传统的热线和LDV都是具有高时间分辨率的基于点的测量技术,通常需要泰勒的冻结假设来将时间速度波动转换为湍流中的空间速度波动。热线和多点 LDV 的多探头可用于测量速度空间梯度,以根据其定义直接计算湍流耗散率。尽管如此,只有 PIV 和 PTV 可以同时测量湍流场中湍流耗散率的分布。这些方法都存在空间分辨率不足的问题,因为需要速度测量来解析到 Kolmogorov 标度,以便严格直接计算波动速度梯度的湍流耗散率。为了消除解析到 Kolmogorov 尺度的必要性,可以使用大涡模拟类比和 Smagorinsky 模型来估计未解析的小尺度,但 Smagorinsky 常数在此阶段充当调整参数。在湍流耗散率的估计中比较了不同的速度处理方法。使用结构函数估计湍流耗散率,能谱和量纲分析方法可以减少低分辨率的影响,但它只能提供时间或空间的平均湍流耗散率。然而,湍流耗散率场分布不均匀,具有间歇性的时空性质。本文的目的是回顾现有实验技术和不同计算方法的发展和局限性,并确定成功估计湍流多相流中湍流耗散率的未来方向。
更新日期:2021-01-01
down
wechat
bug