当前位置: X-MOL 学术Virtual Phys. Prototyp. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Design and experimental validation of self-supporting topologies for additive manufacturing
Virtual and Physical Prototyping ( IF 10.2 ) Pub Date : 2019-07-24 , DOI: 10.1080/17452759.2019.1637023
Yun-Fei Fu 1 , Bernard Rolfe 1 , Louis N. S. Chiu 2 , Yanan Wang 1 , Xiaodong Huang 3 , Kazem Ghabraie 1
Affiliation  

Incorporating additive manufacturing (AM) constraints in topology optimisation can lead to performance optimality while ensuring manufacturability of designs. Numerical techniques have been previously proposed to obtain support-free designs in AM, however, few works have verified the manufacturability of their solutions. Physical verification of manufacturability becomes more critical recalling that the conventional density-based topology optimisation methods will inevitably require post-processing to smooth the boundaries before sending the results to a 3D printer. This paper presents the smooth design of self-supporting topologies using the combination of a new Solid Isotropic Microstructure with Penalisation method (SIMP) developed based on elemental volume fractions and an existing AM filter. Manufacturability of selected simulation results are verified with Fused Deposition Modeling (FDM) technology. It is illustrated that the proposed method is able to generate convergent self-supporting topologies which are printable using FDM.



中文翻译:

用于增材制造的自支撑拓扑的设计和实验验证

在拓扑优化中纳入增材制造(AM)约束可以在确保设计可制造性的同时实现性能优化。先前已经提出了数值技术来获得AM中的无支撑设计,但是,很少有工作证明了其解决方案的可制造性。回忆起传统的基于密度的拓扑优化方法,不可避免地需要后处理以平滑边界,然后再将结果发送到3D打印机,因此可制造性的物理验证变得更加关键。本文结合了新的固体各向同性微结构与基于元素体积分数开发的罚分法(SIMP)的结合以及现有的AM滤波器,提出了自支撑拓扑的平滑设计。所选模拟结果的可制造性已通过融合沉积建模(FDM)技术进行了验证。说明了所提出的方法能够生成可使用FDM打印的收敛自支持拓扑。

更新日期:2019-07-24
down
wechat
bug