当前位置: X-MOL 学术Phys. Mesomech. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Mesoscopic Structural States at the Nanoscale in Surface Layers of Titanium and Its Alloy Ti-6Al-4V in Ultrasonic and Electron Beam Treatment
Physical Mesomechanics ( IF 1.8 ) Pub Date : 2019-09-01 , DOI: 10.1134/s1029959919050011
V. E. Panin , A. V. Panin , O. B. Perevalova , A. R. Shugurov

Ultrasonic and electron beam treatment of commercial titanium VT1-0 and its alloy VT6 (Ti-6Al-4V) produces a nonequilibrium grain-subgrain hierarchical substructure in the surface layer, which causes a multiscale fragmentation of the material and reveals a damping effect. When cooled in the gradient temperature field (during electron beam treatment) and when the β phase of the initial alloy is destroyed by ultrasound, the high-temperature bcc structure of the surface layer undergoes a nonequilibrium phase transition into an hcp α-phase structure. The excess specific volume of the β phase is hierarchically distributed in the a phase through the growth of nonequilibrium α′ and α″ martensite, and in the form of local ω-phase precipitation along the grain boundaries of the α phase. The specific volume of the nonequilibrium phases exceeds the specific volume of the α phase. This eliminates the formation of micropores and causes material fragmentation at the micro- and nanoscale structural levels during the nonequilibrium β → α phase transition. The growing α′ laths cause the fragmentation of the α phase at the microscale level. The α″ laths grow within the nonequilibrium α′ laths; they have a thickness of ∼1.5 nm and fragment the material at the nanoscale level. This process is controlled by the electronic subsystem that creates nanoscale mesoscopic structural states for the formation of nonequilibrium martensite phases. The reversible elastoplastic deformation of the nonequilibrium martensite phases at the nanoscale level governs the damping effect of the surface layer subjected to ultrasonic or electron beam treatment. The generation of nanoscale mesoscopic structural states and the related new mechanism of reversible deformation in the conditions of broken translational invariance of the lattice in a deformable solid has been confirmed experimentally.

中文翻译:

超声和电子束处理中钛及其合金 Ti-6Al-4V 表面层的纳米级介观结构状态

商用钛 VT1-0 及其合金 VT6 (Ti-6Al-4V) 的超声波和电子束处理在表层产生非平衡晶粒-亚晶粒分级亚结构,导致材料多尺度破碎并显示阻尼效应。当在梯度温度场中冷却时(在电子束处理过程中),当初始合金的 β 相被超声破坏时,表面层的高温 bcc 结构发生非平衡相转变为 hcp α 相结构。β相的过剩比容通过非平衡α'和α''马氏体的生长而分级分布在a相中,并沿α相的晶界以局部ω相析出的形式存在。非平衡相的比容大于α相的比容。这消除了微孔的形成,并在非平衡 β → α 相变期间导致微米和纳米级结构水平的材料破碎。不断增长的 α' 板条导致了 α 相在微观层面的破碎。α″板条在非平衡α′板条内生长;它们的厚度约为 1.5 nm,并在纳米级水平上将材料破碎。该过程由电子子系统控制,该子系统创建用于形成非平衡马氏体相的纳米级介观结构状态。非平衡马氏体相在纳米级的可逆弹塑性变形控制着经过超声波或电子束处理的表面层的阻尼效果。
更新日期:2019-09-01
down
wechat
bug