当前位置: X-MOL 学术bioRxiv. Biophys. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Quantification and demonstration of the collective constriction-by-ratchet mechanism in the dynamin molecular motor
bioRxiv - Biophysics Pub Date : 2021-02-23 , DOI: 10.1101/2020.09.10.289546
Oleg Ganichkin , Renee Vancraenenbroeck , Gabriel Rosenblum , Hagen Hofmann , Alexander S. Mikhailov , Oliver Daumke , Jeffrey K. Noel

Dynamin oligomerizes into helical filaments on tubular membrane templates and, through constriction, cleaves them in a GTPase-driven way. Structural observations of GTP-dependent cross-bridges between neighboring filament turns have led to the suggestion that dynamin operates as a molecular ratchet motor. However, the proof of such mechanism remains absent. Particularly, it is not known whether a powerful enough stroke is produced and how the motor modules would cooperate in the constriction process. Here, we characterized the dynamin motor modules by single molecule (sm) FRET and found strong nucleotide-dependent conformational changes. Integrating smFRET with molecular dynamics simulations allowed us to determine the forces generated in a power stroke. Subsequently, the quantitative force data and the measured kinetics of the GTPase cycle were incorporated into a model including both a dynamin filament, with explicit motor cross-bridges, and a realistic deformable membrane template. In our simulations, collective constriction of the membrane by dynamin motor modules, based on the ratchet mechanism, is directly reproduced and analyzed. Functional parallels between the dynamin system and actomyosin in the muscle are seen. Through concerted action of the motors, tight membrane constriction to the hemi-fission radius can be reached. Our experimental and computational study provides an example of how collective motor action in megadalton molecular assemblies can be approached and explicitly resolved.

中文翻译:

动力分子运动中棘轮式集体收缩机制的量化和论证

动力蛋白在管状膜模板上低聚成螺旋状细丝,并通过收缩以GTPase驱动的方式裂解它们。对邻近的细丝匝之间依赖GTP的跨桥的结构观察已得出这样的建议,即动力蛋白起着分子棘轮马达的作用。但是,仍然没有这种机制的证明。特别是,尚不知道是否产生足够大的行程以及在收缩过程中电动机模块将如何配合。在这里,我们通过单分子(sm)FRET来表征动力模块,并发现了强的核苷酸依赖性构象变化。将smFRET与分子动力学模拟集成在一起,可以确定动力冲程中产生的力。随后,GTPase循环的定量力数据和测得的动力学被整合到一个模型中,该模型既包括带有显式电机横桥的动态力长丝,也包括真实的可变形膜模板。在我们的模拟中,直接复制并分析了基于棘轮机构的动力模块对膜的集体收缩。在肌肉中,动力系统和肌动球蛋白之间的功能相似。通过电动机的共同作用,可以使半裂变半径的膜紧缩。我们的实验和计算研究提供了一个示例,说明了如何在Megadalton分子组件中实现集体运动行为并明确解决。和现实的可变形膜模板。在我们的模拟中,直接复制并分析了基于棘轮机构的动力模块对膜的集体收缩。在肌肉中,动力系统和肌动球蛋白之间的功能相似。通过电动机的共同作用,可以使半裂变半径的膜紧缩。我们的实验和计算研究提供了一个示例,说明了如何在Megadalton分子组件中实现集体运动行为并明确解决。和现实的可变形膜模板。在我们的模拟中,直接复制并分析了基于棘轮机构的动力模块对膜的集体收缩。在肌肉中,动力系统和肌动球蛋白之间的功能相似。通过电动机的共同作用,可以使半裂变半径的膜紧缩。我们的实验和计算研究提供了一个示例,说明了如何在Megadalton分子组件中实现集体运动行为并明确解决。通过电动机的共同作用,可以使半裂变半径的膜紧缩。我们的实验和计算研究提供了一个示例,说明如何接近和显着解决兆达尔顿分子组件中的集体运动行为。通过电动机的共同作用,可以使半裂变半径的膜紧缩。我们的实验和计算研究提供了一个示例,说明如何接近和显着解决兆达尔顿分子组件中的集体运动行为。
更新日期:2021-02-24
down
wechat
bug