当前位置: X-MOL 学术J. Opt. Soc. Amer. B › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Influence of Ho3+ doping on the structural and optical characteristics of ZnO–ZrO2 nanocomposites synthesized by the solution combustion method
Journal of the Optical Society of America B ( IF 1.8 ) Pub Date : 2020-09-11 , DOI: 10.1364/josab.396239
M. K. Musembi , F. B. Dejene , I. Ahemen , K. G. Tshabalala

The ${\rm ZnO} {-} {{\rm ZrO}_2}$ nanocomposites were prepared using varying concentrations of ${{\rm Ho}^{3 +}}$ ions through the solution combustion method. Zirconium butoxide and zinc nitrate were used as the precursor solutions with citric acid as a fuel. The synthesis was done at a low temperature of 80°C and then the samples calcined at 600°C for 2 h, before characterization. Rietveld refinement revealed that the nanocomposite consisted of wurtzite zinc oxide, mixed with cubic and tetragonal zirconia phases. Scanning electron microscopy images show dispersed small polygonal crystals within a spongy matrix for lower ${{\rm Ho}^{3 +}}$ concentrations, while samples with higher dopant ratios featured larger crystals mixed with rods. The UV spectra had absorption edges from 400 nm with a dopant-dependent energy band gap ranging between 2.78 and 3.04 eV. The nanocomposites exhibited an initial violet emission that varied through blue into the green region, depending on the ${{\rm Ho}^{3 +}}$ doping concentration. Dipole–dipole interaction was found to be responsible for the luminescence quenching within the nanocomposite material.

中文翻译:

Ho 3+掺杂对固溶燃烧法合成ZnO-ZrO 2纳米复合材料的结构和光学特性的影响

$ {\ RM的ZnO} { - } {{\ RM的ZrO} _2} $使用不同浓度的制备纳米复合材料的$ {{\ RM何} ^ {3 +}} $通过溶液燃烧方法的离子。丁酸锆和硝酸锌用作柠檬酸作为燃料的前体溶液。合成在80°C的低温下进行,然后在表征之前将样品在600°C煅烧2 h。Rietveld精炼显示,纳米复合材料由纤锌矿氧化锌与立方和四方氧化锆相混合而成。扫描电子显微镜图像显示海绵状基质中分散的小的多边形晶体,从而降低了$ {{\ rm Ho} ^ {3 +}} $浓度较高的样品中,较大的晶体中混有棒。UV光谱具有400nm的吸收边缘,其掺杂剂依赖性能带隙为2.78至3.04eV。纳米复合材料表现出初始的紫光发射,该紫光发射通过蓝色变化到绿色区域,这取决于$ {{\ rm Ho} ^ {3 +}} $的掺杂浓度。发现偶极-偶极相互作用是纳米复合材料内发光猝灭的原因。
更新日期:2020-10-30
down
wechat
bug