当前位置: X-MOL 学术ACS Appl. Mater. Interfaces › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Water freezes at near-zero temperatures using carbon nanotube based electrodes under static electric fields.
ACS Applied Materials & Interfaces ( IF 8.3 ) Pub Date : 2020-09-11 , DOI: 10.1021/acsami.0c11694
Zhi Huang 1 , Sumanjeet Kaur 1 , Musahid Ahmed 2 , Ravi Prasher 1, 3
Affiliation  

Although static electric fields have been effective in controlling ice nucleation, the highest freezing temperature (Tf) of water that can be achieved in an electric field (E) is still uncertain. We performed a systematic study of the effect of an electric field on water freezing by varying the thickness of a dielectric layer and the voltage across it in an electrowetting system. Results show that Tf first increases sharply with E and then reaches saturation at −3.5 °C after a critical value E of 6 × 106 V/m. Using classical heterogeneous nucleation theory, it is revealed that this behavior is due to saturation in the contact angle of the ice embryo with the underlying substrate. Finally, we show that it is possible to overcome this freezing saturation by controlling the uniformity of the electric field using carbon nanotubes. We achieve a Tf of −0.6 °C using carbon nanotube-based electrodes with an E of 3 × 107 V/m. This work sheds new light on the control of ice nucleation and has the potential to impact many applications ranging from food freezing to ice production.

中文翻译:

使用基于碳纳米管的电极在静电电场下,水在接近零的温度下冻结。

虽然静态电场已有效地控制冰核,最高冷冻温度(Ť ˚F,可以在电场中来实现的水)(ê)仍不明朗。我们通过改变电润湿系统中介电层的厚度和介电层两端的电压,对电场对水冻结的影响进行了系统的研究。结果表明,T f首先随E急剧增加,然后在临界值E为6×10 6后在-3.5°C达到饱和伏/米 使用经典的异质成核理论,揭示了这种行为是由于冰胚与下面的基底的接触角饱和所致。最后,我们表明可以通过使用碳纳米管控制电场的均匀性来克服这种冻结饱和。使用E为3×10 7 V / m的基于碳纳米管的电极,我们可实现-0.6°C的T f。这项工作为控制冰核形成提供了新的思路,并有可能影响从食品冷冻到制冰的许多应用。
更新日期:2020-10-07
down
wechat
bug