当前位置: X-MOL 学术Adv. Electron. Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Understanding Charge Transport in High‐Mobility p‐Doped Multicomponent Blend Organic Transistors
Advanced Electronic Materials ( IF 5.3 ) Pub Date : 2020-09-11 , DOI: 10.1002/aelm.202000539
Alberto D. Scaccabarozzi 1 , Francesca Scuratti 1 , Alex J. Barker 1 , Aniruddha Basu 2 , Alexandra F. Paterson 2 , Zhuping Fei 3 , Olga Solomeshch 4 , Annamaria Petrozza 1 , Nir Tessler 4 , Martin Heeney 3 , Thomas D. Anthopoulos 2 , Mario Caironi 1
Affiliation  

The use of ternary systems comprising polymers, small molecules, and molecular dopants represents a promising approach for the development of high‐mobility, solution‐processed organic transistors. However, the current understanding of the charge transport in these complex systems, and particularly the role of molecular doping, is rather limited. Here, the role of the individual components in enhancing hole transport in the best‐performing ternary blend systems comprising the small molecule 2,7‐dioctyl[1]benzothieno[3,2‐b][1]benzothiophene (C8‐BTBT), the conjugated polymer indacenodithiophene‐alt‐benzothiadiazole (C16IDT‐BT), and the molecular p‐type dopant (C60F48) is investigated. Temperature‐dependent charge transport measurements reveal different charge transport regimes depending on the blend composition, crossing from a thermally activated to a band‐like behavior. Using the charge‐modulation spectroscopy technique, it is shown that in the case of the pristine blend, holes relax onto the conjugated polymer phase where shallow traps dominate carrier transport. Addition of a small amount of C60F48 deactivates those shallow traps allowing for a higher degree of hole delocalization within the highly crystalline C8‐BTBT domains located on the upper surface of the blend film. Such synergistic effect of a highly ordered C8‐BTBT phase, a polymer bridging grain boundaries, and p‐doping results in the exceptionally high hole mobilities and band‐like transport observed in this blend system.

中文翻译:

了解高迁移率p掺杂多组分混合有机晶体管中的电荷传输

包含聚合物,小分子和分子掺杂剂的三元体系的使用代表了开发高迁移率,溶液处理的有机晶体管的有前途的方法。但是,目前对这些复杂系统中电荷传输的理解,尤其是分子掺杂的作用,是相当有限的。在此,各个组分在提高的空穴迁移的作用效果最佳的,包括小分子2,7-二辛基[1]三元混合物系统苯并噻吩并[3,2- b ] [1]苯并噻吩(C 8 -BTBT)中,共轭聚合物indacenodithiophene- ALT -benzothiadiazole(C 16 IDT-BT),以及分子p型掺杂剂(C 60 ˚F 48)进行调查。取决于温度的电荷传输测量揭示了取决于共混物组成的不同电荷传输方式,从热活化行为转变为带状行为。使用电荷调制光谱技术,结果表明,在原始混合物的情况下,空穴松弛到共轭聚合物相上,其中浅陷阱占主导地位的载流子传输。添加少量的C 60 F 48会使那些浅陷阱失去活性,从而使位于共混膜上表面的高度结晶的C 8 -BTBT域内的空穴散化程度更高。高度有序的C 8 -BTBT相,聚合物桥接晶界和p的这种协同效应掺杂导致在此共混体系中观察到极高的空穴迁移率和带状传输。
更新日期:2020-10-11
down
wechat
bug