当前位置: X-MOL 学术Thin Solid Films › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Revisiting of the physico-chemical properties of polyelectrolyte multilayers for a fine tuning of the immobilization of bacteria or nanoparticles
Thin Solid Films ( IF 2.0 ) Pub Date : 2020-11-01 , DOI: 10.1016/j.tsf.2020.138345
I. Gammoudi , M. Mathelié-Guinlet , Z. Benabdallah , F. Moroté , H. Kahli , L. Beven , R. Kalfat , A. Othmane , M.H. Delville , C. Grauby-Heywang , C. Dejous , T. Cohen-Bouhacina

Abstract Increasingly used in industrial coatings, polyelectrolytes multilayers (PEMs) are self-assembled systems made of the alternate deposition of oppositely charged polymers on substrates, usually built by the traditional layer-by-layer method. Their properties strongly depend on environmental physico-chemical parameters. Due to the variety of conditions used in the literature on the one hand and the diversity of polyelectrolytes systems on the other hand, it remains difficult to bring out general principles, leading now to a lack of a real understanding of the PEM buildup, from the macro- to the nanoscale. Here, combining acoustic and electrochemical methods with atomic force microscopy, in a systematic approach, we uncover the critical role of the deposition protocol in the growth regime of PEMs made of cationic poly (allylamine hydrochloride) and anionic poly(4-styrene sulfonate, sodium). Traditional dipping leads to thick, heterogeneous and relatively isolating PEMs whereas a spin-coating assisted method leads to thinner, homogeneous and more permeable PEMs. We also highlight that the pH and the ionic strength influence not only the electrostatic interactions and polyelectrolyte conformation in solution but also their organization after their adsorption on the substrate. Finally, our easily and rapidly adaptable protocol paves the way for promising potential bio-applications, since PEMs are applied to the bacterial immobilization on substrates or as a coating for nanostructured biosensor transducer.

中文翻译:

重新审视聚电解质多层膜的物理化学特性,以微调细菌或纳米粒子的固定

摘要 聚电解质多层膜 (PEM) 越来越多地用于工业涂料,是一种自组装系统,由带相反电荷的聚合物交替沉积在基材上制成,通常通过传统的逐层方法构建。它们的特性在很大程度上取决于环境物理化学参数。由于一方面文献中使用的条件多种多样,另一方面聚电解质系统的多样性,仍然难以提出一般原则,导致现在缺乏对 PEM 积累的真正理解,从宏观到纳米。在这里,将声学和电化学方法与原子力显微镜相结合,以系统的方式,我们揭示了沉积协议在由阳离子聚(烯丙胺盐酸盐)和阴离子聚(4-苯乙烯磺酸钠)制成的 PEM 生长机制中的关键作用。传统的浸渍导致厚的、异质的和相对隔离的 PEM,而旋涂辅助方法导致更薄、均匀和更具渗透性的 PEM。我们还强调,pH 值和离子强度不仅影响溶液中的静电相互作用和聚电解质构象,而且影响它们在基材上吸附后的组织。最后,我们轻松快速地适应协议为有前途的潜在生物应用铺平了道路,因为 PEM 被应用于细菌固定在基板上或作为纳米结构生物传感器传感器的涂层。传统的浸渍导致厚的、异质的和相对隔离的 PEM,而旋涂辅助方法导致更薄、均匀和更具渗透性的 PEM。我们还强调,pH 值和离子强度不仅影响溶液中的静电相互作用和聚电解质构象,而且影响它们在基材上吸附后的组织。最后,我们轻松快速地适应协议为有前途的潜在生物应用铺平了道路,因为 PEM 被应用于细菌固定在基板上或作为纳米结构生物传感器传感器的涂层。传统的浸渍导致厚的、异质的和相对隔离的 PEM,而旋涂辅助方法导致更薄、均匀和更具渗透性的 PEM。我们还强调,pH 值和离子强度不仅影响溶液中的静电相互作用和聚电解质构象,而且影响它们在基材上吸附后的组织。最后,我们轻松快速地适应协议为有前途的潜在生物应用铺平了道路,因为 PEM 被应用于细菌固定在基板上或作为纳米结构生物传感器传感器的涂层。我们还强调,pH 值和离子强度不仅影响溶液中的静电相互作用和聚电解质构象,而且影响它们在基材上吸附后的组织。最后,我们轻松快速地适应协议为有前途的潜在生物应用铺平了道路,因为 PEM 被应用于细菌固定在基板上或作为纳米结构生物传感器传感器的涂层。我们还强调,pH 值和离子强度不仅影响溶液中的静电相互作用和聚电解质构象,而且影响它们在基材上吸附后的组织。最后,我们轻松快速地适应协议为有前途的潜在生物应用铺平了道路,因为 PEM 被应用于细菌固定在基板上或作为纳米结构生物传感器传感器的涂层。
更新日期:2020-11-01
down
wechat
bug