当前位置: X-MOL 学术J. Magn. Magn. Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Effect of nanofluid distribution on therapeutic effect considering transient bio-tissue temperature during magnetic hyperthermia
Journal of Magnetism and Magnetic Materials ( IF 2.5 ) Pub Date : 2021-01-01 , DOI: 10.1016/j.jmmm.2020.167391
Yundong Tang , Tao Jin , Rodolfo C.C. Flesch , Yueming Gao , Minghua He

Abstract Magnetic hyperthermia ablates malignant cells by the heat dissipating from magnetic nanoparticles (MNPs) when subjects to an applied magnetic field. The treatment effect during hyperthermia is significantly related to many factors, but is primarily decided by bio-tissue intrinsic characteristics as well as the nanofluid concentration distribution inside tumor region. In addition, the transient bio-tissue temperature can also impact the treatment effect through the power dissipation of MNPs and bio-heat transfer model during therapy. This paper investigates the thermal ablation behavior for two typical malignant cells based on different nanofluid concentration distribution, in which the transient bio-tissue temperature is considered as the influence factor for the power dissipation of MNPs as well as the bio-heat transfer model during therapy. The simulation results demonstrate that a Gaussian distribution with lower variance for nanofluid concentration should have a worse treatment temperature profile than the case with a higher variance, which will then result in a poor ablation situation for the proposed malignant cells during therapy. Meanwhile, results also show that the power dissipation of MNPs should be increased properly in order to compensate the negative effect due to the transient bio-tissue temperature in practical application.

中文翻译:

磁热疗过程中考虑瞬态生物组织温度的纳米流体分布对治疗效果的影响

摘要 磁热疗通过在施加磁场时从磁性纳米粒子 (MNP) 散发的热量来消融恶性细胞。热疗期间的治疗效果与许多因素显着相关,但主要取决于生物组织的内在特征以及肿瘤区域内的纳米流体浓度分布。此外,瞬态生物组织温度还可以通过治疗过程中 MNP 的功耗和生物传热模型影响治疗效果。本文研究了基于不同纳米流体浓度分布的两种典型恶性细胞的热消融行为,其中瞬态生物组织温度被认为是 MNPs 功率耗散的影响因素以及治疗过程中的生物传热模型。模拟结果表明,与具有较高方差的情况相比,具有较低纳米流体浓度方差的高斯分布应具有更差的治疗温度曲线,这将导致治疗期间建议的恶性细胞的消融情况不佳。同时,结果还表明,在实际应用中,应适当增加 MNP 的功耗,以补偿瞬态生物组织温度造成的负面影响。模拟结果表明,与具有较高方差的情况相比,具有较低纳米流体浓度方差的高斯分布应具有更差的治疗温度曲线,这将导致治疗期间建议的恶性细胞的消融情况不佳。同时,结果还表明,在实际应用中,应适当增加 MNP 的功耗,以补偿瞬态生物组织温度造成的负面影响。模拟结果表明,与具有较高方差的情况相比,具有较低纳米流体浓度方差的高斯分布应具有更差的治疗温度曲线,这将导致治疗期间建议的恶性细胞的消融情况不佳。同时,结果还表明,在实际应用中,应适当增加 MNP 的功耗,以补偿瞬态生物组织温度造成的负面影响。
更新日期:2021-01-01
down
wechat
bug