当前位置: X-MOL 学术Int. J. Therm. Sci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Thermally-enhanced nanoencapsulated phase change materials for latent functionally thermal fluid
International Journal of Thermal Sciences ( IF 4.5 ) Pub Date : 2021-01-01 , DOI: 10.1016/j.ijthermalsci.2020.106619
Wei Lan , Bofeng Shang , Ruikang Wu , Xingjian Yu , Run Hu , Xiaobing Luo

Abstract Phase-change materials (PCMs) have attracted numerous attentions in thermal energy storage area due to their high latent heat capacity. However, their inherently low thermal conductivity and potential leakage risk severely decrease the thermal storage efficiency. In this study, thermally-enhanced nanoencapsulated phase change materials (NEPCMs) were proposed to overcome those limitations. Through a miniemulsion polymerization approach, the n-Octadecane is encapsulated by SiO2/BN shell, which not only enhances the thermal conductivity, but also avoids the leakage problem during the phase change process. Compared with pristine PCMs, the thermal conductivity of the prepared NEPCMs was reinforced by 527% to 0.912 W m−1 K−1, which is the highest record among all the encapsulated PCMs with encapsulation ratio above 50%. The latent heat of the NEPCMs reaches 136.8 J/g with an encapsulation ratio as high as 60.4%. The thermal gravity analysis (TGA) and thermal cycling tests reveal that the nanocapsules possess excellent thermal stability and reliability. Furthermore, the NEPCMs were applied in latent functionally thermal fluid (LFTF) to enhance its thermal storage capacity. A microchannel cooling setup, with the NEPCMs/water LFTF as the coolant, was developed to evaluate the LFTF cooling performance. Compared with the pristine water, LFTF with 20 wt% NEPCMs reduced the heat source temperature by 12.1 °C at 80 W, showing their potential for the thermal management applications in electronic devices.

中文翻译:

用于潜在功能热流体的热增强纳米封装相变材料

摘要 相变材料(PCMs)由于其高潜热容量而在热能储存领域引起了广泛关注。然而,它们固有的低导热性和潜在的泄漏风险严重降低了蓄热效率。在这项研究中,提出了热增强纳米封装相变材料 (NEPCM) 来克服这些限制。通过细乳液聚合方法,正十八烷被SiO2/BN壳包裹,不仅提高了导热性,而且避免了相变过程中的泄漏问题。与原始 PCM 相比,所制备的 NEPCM 的热导率提高了 527%,达到 0.912 W m-1 K-1,这是所有封装率超过 50% 的封装 PCM 中最高的记录。NEPCMs 的潜热达到 136.8 J/g,包封率高达 60.4%。热重分析(TGA)和热循环测试表明纳米胶囊具有优异的热稳定性和可靠性。此外,NEPCMs 应用于潜在功能热流体 (LFTF) 以提高其储热能力。开发了一种微通道冷却装置,以 NEPCMs/水 LFTF 作为冷却剂,用于评估 LFTF 冷却性能。与原始水相比,含有 20 wt% NEPCMs 的 LFTF 在 80 W 下将热源温度降低了 12.1 °C,显示了它们在电子设备热管理应用中的潜力。热重分析(TGA)和热循环测试表明纳米胶囊具有优异的热稳定性和可靠性。此外,NEPCMs 应用于潜在功能热流体 (LFTF) 以提高其储热能力。开发了一种微通道冷却装置,以 NEPCMs/水 LFTF 作为冷却剂,用于评估 LFTF 冷却性能。与原始水相比,含有 20 wt% NEPCMs 的 LFTF 在 80 W 下将热源温度降低了 12.1 °C,显示了它们在电子设备热管理应用中的潜力。热重分析(TGA)和热循环测试表明纳米胶囊具有优异的热稳定性和可靠性。此外,NEPCMs 被应用于潜在功能热流体 (LFTF) 以提高其储热能力。开发了一种微通道冷却装置,以 NEPCMs/水 LFTF 作为冷却剂,用于评估 LFTF 冷却性能。与原始水相比,含有 20 wt% NEPCMs 的 LFTF 在 80 W 下将热源温度降低了 12.1 °C,显示了它们在电子设备热管理应用中的潜力。开发用于评估 LFTF 冷却性能。与原始水相比,含有 20 wt% NEPCMs 的 LFTF 在 80 W 下将热源温度降低了 12.1 °C,显示了它们在电子设备热管理应用中的潜力。开发用于评估 LFTF 冷却性能。与原始水相比,含有 20 wt% NEPCMs 的 LFTF 在 80 W 下将热源温度降低了 12.1 °C,显示了它们在电子设备热管理应用中的潜力。
更新日期:2021-01-01
down
wechat
bug