当前位置: X-MOL 学术Appl. Therm. Eng. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Experimental and numerical analysis of thermal flow in open-cell porous metal during Darcy-Forchheimer transition regime
Applied Thermal Engineering ( IF 6.1 ) Pub Date : 2020-09-11 , DOI: 10.1016/j.applthermaleng.2020.116029
Sung-Ho Park , Dong-Ho Seo , Ji Hwan Jeong

A numerical analysis of pressure drop and heat transfer for open-cell porous media is performed using a three-dimensional conjugate heat transfer model. Porous metal with a pore density of 20 pores per inch (PPI) and porosity of 95.7% is used in the present numerical simulation. Real microstructure of the open-cell porous metal is constructed using stacked images obtained by X-ray computed tomography method. Computed thermal-fluid characteristics are compared directly with the experimental pressure drop and unit overall thermal resistance values. The flow through porous metal can be divided into the Darcy regime and the Forchheimer regime. The thermo-fluidic characteristics in the Darcy regime and the Forchheimer regime are investigated numerically. The flow separation is not observed in the Darcy regime, but the wake region occurs in the Forchheimer regime because of the flow separation on the ligament surface. The contribution of the total drag acting on the walls (top & bottom) is very small, namely, less than 5% compared to the total drag on ligaments. The total drag force coefficient of ligaments tends to converge at high Reynolds number. This is because the pressure drag force is dominant due to the wake effect in the Forchheimer regime. Local Nusselt number is large near the upstream side of the ligament and very low in the wake region. Average Nusselt number increases with Reynolds number. In the Forchheimer regime, wakes developed behind ligaments increase the pressure loss and decrease the heat transfer performance.



中文翻译:

Darcy-Forchheimer过渡过程中开孔多孔金属热流的实验和数值分析

使用三维共轭传热模型对开孔多孔介质的压降和传热进行了数值分析。在目前的数值模拟中使用的多孔金属的孔密度为每英寸20个孔(PPI),孔隙率为95.7%。开孔多孔金属的真实微观结构是使用通过X射线计算机断层扫描方法获得的堆叠图像构建的。将计算出的热流体特性直接与实验压降和单位整体热阻值进行比较。通过多孔金属的流动可以分为达西(Darcy)制度和福希海默(Forchheimer)制度。数值研究了达西体制和Forchheimer体制中的热流体特征。在达西政权中没有观察到流动分离,但是由于韧带表面的流动分离,尾迹区发生在Forchheimer体制中。作用在墙壁(顶部和底部)上的总阻力的贡献很小,即与韧带上的总阻力相比不到5%。韧带的总阻力系数趋于在高雷诺数下收敛。这是因为在Forchheimer体制中,由于尾流效应,压力拖曳力占主导地位。韧带上游附近的局部Nusselt数很大,而在尾迹区域则很低。平均努塞尔数随雷诺数增加。在Forchheimer体制中,韧带后部形成的尾流会增加压力损失并降低传热性能。作用在墙壁(顶部和底部)上的总阻力的贡献很小,即与韧带上的总阻力相比不到5%。韧带的总阻力系数趋于在高雷诺数下收敛。这是因为在Forchheimer体制中,由于尾流效应,压力拖曳力占主导地位。韧带上游附近的局部Nusselt数很大,而在尾迹区域则很低。平均努塞尔数随雷诺数增加。在Forchheimer体制中,韧带后部形成的尾流会增加压力损失并降低传热性能。作用在墙壁(顶部和底部)上的总阻力的贡献很小,即与韧带上的总阻力相比不到5%。韧带的总阻力系数趋于在高雷诺数下收敛。这是因为在Forchheimer体制中,由于尾流效应,压力拖曳力占主导地位。韧带上游附近的局部Nusselt数很大,而在尾迹区域则很低。平均努塞尔数随雷诺数增加。在Forchheimer体制中,韧带后部形成的尾流会增加压力损失并降低传热性能。这是因为在Forchheimer体制中,由于尾流效应,压力拖曳力占主导地位。韧带上游附近的局部Nusselt数很大,而在尾迹区域则很低。平均努塞尔数随雷诺数增加。在Forchheimer体制中,韧带后部形成的尾流会增加压力损失并降低传热性能。这是因为在Forchheimer体制中,由于尾流效应,压力拖曳力占主导地位。韧带上游附近的局部Nusselt数很大,而在尾迹区域则很低。平均努塞尔数随雷诺数增加。在Forchheimer体制中,韧带后部形成的尾流会增加压力损失并降低传热性能。

更新日期:2020-09-11
down
wechat
bug