当前位置: X-MOL 学术Microfluid. Nanofluid. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Implementation of a nanochannel open/close valve into a glass nanofluidic device
Microfluidics and Nanofluidics ( IF 2.3 ) Pub Date : 2020-09-11 , DOI: 10.1007/s10404-020-02383-x
Hiroki Sano , Yutaka Kazoe , Kyojiro Morikawa , Takehiko Kitamori

In micro-/nanofluidics, channel open/close valves are fundamental to integrating fluid operations and realizing highly integrated analytical devices. Recently, we proposed a nanochannel open/close valve utilizing glass deformation and verified the principle of opening and closing nanochannels. Glass deformation sufficient to close the valve was achieved using a 45-µm-thick glass sheet as a material of a nanofluidic device. However, since the device incorporates the thin glass sheet and is not robust enough to be used for repeated analyses, fluid operations utilizing the valve have not been verified sufficiently. Thus, in the present study, we fabricated a nanofluidic device implemented with a nanochannel open/close valve using rigid glass substrates of thicknesses on the order of 100 μm, and verified fluid operations utilizing the valve. On a small part of the substrate, we designed and fabricated a 30-µm-thick deformation section for the valve. The open/close operation and the performance of the valve were verified. The leakage of the valve was measured to be 2%, the response time was 0.9 s, and the number of repetitions was over 100,000. By utilizing the fabricated valve, we demonstrated fluid operations with femtoliter to picoliter volumes. Flow-switching within approximately 1 s and a flow control rate in the 63-1341 fL/s range was achieved. In addition, the fluid resistance of the valve was investigated both experimentally and numerically to establish a guideline for designing the valve. The valve developed and the design guidelines obtained will greatly contribute to integrated nanofluidic analytical devices.



中文翻译:

将纳米通道打开/关闭阀实现到玻璃纳米流体设备中

在微/纳流体系统中,通道打开/关闭阀是集成流体操作和实现高度集成的分析设备的基础。最近,我们提出了一种利用玻璃变形的纳米通道开/关阀,并验证了打开和关闭纳米通道的原理。使用厚度为45 µm的玻璃板作为纳米流体装置的材料,可实现足以关闭阀门的玻璃变形。但是,由于该设备装有薄玻璃板,并且不够坚固,无法用于重复分析,因此尚未充分验证利用阀门进行的流体操作。因此,在本研究中,我们制造了一种纳米流体装置,该装置使用纳米通道的开/关阀来实现,该阀使用厚度约为100μm的刚性玻璃基板,并验证了利用该阀进行的流体操作。在基片的一小部分,我们为阀门设计并制造了厚度为30 µm的变形段。验证了阀门的打开/关闭操作和性能。测得该阀的泄漏为2%,响应时间为0.9 s,重复次数超过100,000。通过利用装配好的阀门,我们演示了从毫微微升到微微升容量的流体操作。实现了大约1 s内的流量切换,流量控制速率在63-1341 fL / s的范围内。此外,还对阀门的流体阻力进行了实验和数值研究,以建立阀门设计指南。开发的阀门和获得的设计指南将极大地有助于集成纳米流体分析设备。我们为阀门设计并制造了厚度为30 µm的变形段。验证了阀门的打开/关闭操作和性能。测得该阀的泄漏为2%,响应时间为0.9 s,重复次数超过100,000。通过利用装配好的阀门,我们演示了从毫微微升到微微升容量的流体操作。实现了大约1 s内的流量切换,流量控制速率在63-1341 fL / s的范围内。此外,还对阀门的流体阻力进行了实验和数值研究,以建立阀门设计指南。开发的阀和获得的设计指南将极大地有助于集成纳米流体分析设备。我们为阀门设计并制造了厚度为30 µm的变形段。验证了阀门的打开/关闭操作和性能。测得该阀的泄漏为2%,响应时间为0.9 s,重复次数超过100,000。通过利用装配好的阀门,我们演示了从毫微微升到微微升容量的流体操作。实现了大约1 s内的流量切换,流量控制速率在63-1341 fL / s的范围内。此外,还对阀门的流体阻力进行了实验和数值研究,以建立阀门设计指南。开发的阀门和获得的设计指南将极大地有助于集成纳米流体分析设备。验证了阀门的打开/关闭操作和性能。测得该阀的泄漏为2%,响应时间为0.9 s,重复次数超过100,000。通过利用装配好的阀门,我们演示了从毫微微升到微微升容量的流体操作。实现了大约1 s内的流量切换,流量控制速率在63-1341 fL / s的范围内。此外,还对阀门的流体阻力进行了实验和数值研究,以建立阀门设计指南。开发的阀和获得的设计指南将极大地有助于集成纳米流体分析设备。验证了阀门的打开/关闭操作和性能。测得该阀的泄漏为2%,响应时间为0.9 s,重复次数超过100,000。通过利用装配好的阀门,我们演示了从毫微微升到微微升容量的流体操作。实现了大约1 s内的流量切换,流量控制速率在63-1341 fL / s的范围内。此外,还对阀门的流体阻力进行了实验和数值研究,以建立阀门设计指南。开发的阀和获得的设计指南将极大地有助于集成纳米流体分析设备。我们演示了毫微微升至皮升容量的流体操作。实现了大约1 s内的流量切换,流量控制速率在63-1341 fL / s的范围内。此外,还对阀门的流体阻力进行了实验和数值研究,以建立阀门设计指南。开发的阀门和获得的设计指南将极大地有助于集成纳米流体分析设备。我们演示了毫微微升至皮升容量的流体操作。实现了大约1 s内的流量切换,流量控制速率在63-1341 fL / s的范围内。此外,还对阀门的流体阻力进行了实验和数值研究,以建立阀门设计指南。开发的阀和获得的设计指南将极大地有助于集成纳米流体分析设备。

更新日期:2020-09-11
down
wechat
bug