当前位置: X-MOL 学术Shock Waves › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Normal shock wave attenuation during propagation in ducts with grooves
Shock Waves ( IF 1.7 ) Pub Date : 2019-08-28 , DOI: 10.1007/s00193-019-00916-0
S. M. Mortazawy , K. Kontis , J. Ekaterinaris

Experimental investigations and numerical simulations of normal shock waves of different strengths propagating inside ducts with roughness are presented. The roughness is added in the form of grooves. Straight and branching ducts are considered in order to better explore the mechanisms causing attenuation of the shock and the physics behind the evolution of the complex wave patterns resulting from diffraction and reflection of the primary moving shock. A well-established finite-volume numerical method is used and further validated for several test cases relevant to this study. The computed results are compared with experimental measurements in ducts with grooves. Good agreement between high-resolution simulations and the experiment is obtained for the shock speeds and complex wave patterns created by the grooves. High-frequency response time histories of pressure at various locations were recorded in the experiments. The recorded pressure histories and shock strengths were found in fair agreement with the two-dimensional simulation results as long as the shock stays in the duct. Overall, the physics of the interactions of the moving shock and the diffracted and reflected waves with the grooves are adequately captured in the high-resolution simulations. Therefore, shocks propagating in ducts with different groove geometries have been simulated in order to identify the groove shape that diminishes shock strength.

中文翻译:

在有凹槽的管道中传播过程中的法向冲击波衰减

介绍了不同强度的法向冲击波在具有粗糙度的管道内传播的实验研究和数值模拟。粗糙度以凹槽的形式添加。考虑直管和支管是为了更好地探索引起激波衰减的机制以及由主要移动激波的衍射和反射导致的复杂波型演化背后的物理原理。使用完善的有限体积数值方法并进一步验证了与本研究相关的几个测试案例。计算结果与带有凹槽的管道中的实验测量值进行比较。对于由凹槽产生的冲击速度和复杂波型,高分辨率模拟与实验之间获得了良好的一致性。实验中记录了不同位置压力的高频响应时间历程。只要冲击留在管道中,记录的压力历史和冲击强度就与二维模拟结果相当一致。总体而言,在高分辨率模拟中充分捕获了移动激波以及衍射和反射波与凹槽相互作用的物理特性。因此,已经模拟了在具有不同凹槽几何形状的管道中传播的冲击,以识别降低冲击强度的凹槽形状。在高分辨率模拟中充分捕捉了移动激波以及衍射和反射波与凹槽相互作用的物理特性。因此,已经模拟了在具有不同凹槽几何形状的管道中传播的冲击,以识别降低冲击强度的凹槽形状。在高分辨率模拟中充分捕捉了移动激波以及衍射和反射波与凹槽相互作用的物理特性。因此,已经模拟了在具有不同凹槽几何形状的管道中传播的冲击,以识别降低冲击强度的凹槽形状。
更新日期:2019-08-28
down
wechat
bug