当前位置: X-MOL 学术Nucl. Eng. Des. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Transformational Challenge Reactor preconceptual core design studies
Nuclear Engineering and Design ( IF 1.9 ) Pub Date : 2020-10-01 , DOI: 10.1016/j.nucengdes.2020.110781
B.R. Betzler , B.J. Ade , A.J. Wysocki , P.K. Jain , P.C. Chesser , M.S. Greenwood , K.A. Terrani

Abstract In the nuclear industry, a manufacturing-informed design approach has the potential to yield the most benefit from advanced manufacturing. By leveraging advanced materials, data science, and rapid testing and deployment, manufacturing-informed design can drive down costs and development times, ultimately improving future commercial viability. This approach is being demonstrated in the US Department of Energy Office of Nuclear Energy (DOE-NE) Transformational Challenge Reactor (TCR) program. Preconceptual design activities for TCR have been focused on analyzing and maturing four reactor core design concepts: two fast-spectrum and two thermal-spectrum systems. The designs were iteratively modified and analyzed, and subcomponents were manufactured in parallel over weeks instead of months or years. To meet key program initiatives (e.g., timeline and material use), several constraints—including fissile material availability, component availability, materials compatibility, and additive manufacturing capabilities—were factored into the design effort, yielding small cores less than one cubic meter in volume with near-term viability. The TCR program has made significant progress on development of advanced moderator materials such as yttrium hydride, advancing the feasibility of gas-cooled thermal spectrum systems using less than 250 kg of high-assay low enriched uranium (HALEU) and occupying less than 1 m3. Each of the two resulting thermal designs uses a different fuel form: traditional UO2 ceramic fuel and tristructural isotropic (advanced TRISO) fuel particles embedded inside a SiC matrix. Core neutronics and thermal performance for these systems were assessed and summarized. Evaluation of the performance metrics for these two moderated designs has yielded the downselected TCR design: a TRISO-fueled and yttrium hydride moderated gas-cooled reactor.

中文翻译:

转型挑战反应堆概念前核心设计研究

摘要 在核工业中,基于制造的设计方法有可能从先进制造中获得最大收益。通过利用先进的材料、数据科学以及快速测试和部署,以制造为导向的设计可以降低成本和开发时间,最终提高未来的商业可行性。美国能源部核能办公室 (DOE-NE) 转型挑战反应堆 (TCR) 计划正在展示这种方法。TCR 的概念前设计活动侧重于分析和完善四个反应堆堆芯设计概念:两个快谱系统和两个热谱系统。设计被反复修改和分析,子组件在数周而不是数月或数年内并行制造。为了满足关键的计划倡议(例如,时间和材料使用),包括裂变材料可用性、组件可用性、材料兼容性和增材制造能力在内的几个限制因素被纳入设计工作,产生体积小于 1 立方米且具有近期可行性的小核心。TCR计划在氢化钇等先进慢化剂材料的开发方面取得了重大进展,推进了使用不到250公斤高含量低浓缩铀(HALEU)和占地不到1立方米的气冷热谱系统的可行性。两种由此产生的热设计中的每一种都使用不同的燃料形式:传统的 UO2 陶瓷燃料和嵌入在 SiC 基体中的三结构各向同性(高级 TRISO)燃料颗粒。对这些系统的核心中子学和热性能进行了评估和总结。
更新日期:2020-10-01
down
wechat
bug