当前位置: X-MOL 学术Nanoscale Microscale Thermophys. Eng. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Internal-Flow-Mediated, Tunable 1D Cassie-to-Wenzel Wetting Transition on Superhydrophobic Microcavity Surfaces during Evaporation
Nanoscale and Microscale Thermophysical Engineering ( IF 2.7 ) Pub Date : 2019-08-30 , DOI: 10.1080/15567265.2019.1660439
Prashant Pendyala 1, 2 , Hong Nam Kim 1, 3 , Harpreet S. Grewal 4 , Uikyu Chae 1, 5 , Sungwook Yang 6 , Il-Joo Cho 1, 3 , Simon Song 2, 7 , Eui-Sung Yoon 1, 8
Affiliation  

ABSTRACT Superhydrophobic textured surfaces are known to maintain a nonwetted state unless external stimuli are applied since they can withstand high wetting pressure. Herein, we report a new category of tunable, one-dimensional (1D) Cassie-to-Wenzel wetting transitions during evaporation, even on superhydrophobic surfaces. The transition initiates at the periphery of the evaporating drop, and the wetting transition propagates toward the center of the drop. The transitions are observed for surfaces with wetting pressures as high as ~ 7,568 Pa, which is much higher than the Laplace pressure, i.e., ~200 Pa. In situ high-contrast fluorescence microscopy images of the evaporating drop show that the transition is induced by preferential depinning of the air-water interface and subsequent formation of air bubbles in the cavities near the three-phase contact line. The evaporation-induced internal flow enhances the pressure within the water droplet and subsequently causes a Cassie-to-Wenzel wetting transition.

中文翻译:

蒸发过程中超疏水微腔表面上的内部流动介导的、可调节的一维 Cassie-to-Wenzel 润湿转变

摘要 众所周知,超疏水纹理表面可以保持非润湿状态,除非施加外部刺激,因为它们可以承受高润湿压力。在此,我们报告了一种新的可调谐、一维 (1D) Cassie-to-Wenzel 在蒸发过程中的润湿转变,即使在超疏水表面上也是如此。转变开始于蒸发液滴的外围,润湿转变向液滴中心传播。在润湿压力高达 ~ 7,568 Pa 的表面上观察到转变,这远高于拉普拉斯压力,即 ~200 Pa。蒸发液滴的原位高对比度荧光显微镜图像显示,转变是由气-水界面的优先脱钉和随后在三相接触线附近的空腔中形成的气泡引起的。蒸发引起的内部流动增强了水滴内的压力,随后导致 Cassie-to-Wenzel 润湿过渡。
更新日期:2019-08-30
down
wechat
bug