当前位置: X-MOL 学术Nanoscale Microscale Thermophys. Eng. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Fabrication and Thermal Characterization of Composite Cu-CNT Micropillars for Capillary-driven Phase-Change Cooling Devices
Nanoscale and Microscale Thermophysical Engineering ( IF 2.7 ) Pub Date : 2019-10-02 , DOI: 10.1080/15567265.2019.1675830
G. Rojo 1 , S. Ghanbari 1 , J. Darabi 1
Affiliation  

ABSTRACT This paper presents the fabrication, testing, and modeling of an array of composite copper-carbon nanotubes (Cu-CNT) micropillars as a wick structure for potential application in passive phase-change cooling systems. This novel wick structure has a larger spacing at the base of the micropillars to provide a higher liquid permeability and mushroom-like structures on the top surface of the micropillars with a smaller spacing to provide a greater capillary pressure. The composite Cu-CNT micropillars were fabricated by an electrochemical deposition method on a patterned copper template. Cauliflower-like nanostructures were then grown on the top surface of the micropillars using chronoamperometry technique to improve the capillary pressure and thermal performance of the wick structure. After successful fabrication of the micropillars, a series of tests were conducted to quantify the thermal performance of the wick structures. The results demonstrate superior thermal and corrosion performances for composite Cu-CNT micropillars compared to those of copper micropillars. Additionally, a thermal resistance network analysis was conducted to model the thermal performance of the fabricated mushroom-shaped micropillar array. Model predictions were compared with the experimental results and good agreement was observed.

中文翻译:

用于毛细管驱动相变冷却装置的复合 Cu-CNT 微柱的制备和热表征

摘要本文介绍了复合铜-碳纳米管 (Cu-CNT) 微柱阵列的制造、测试和建模,作为在被动相变冷却系统中的潜在应用的灯芯结构。这种新颖的灯芯结构在微柱底部具有较大的间距,以提供更高的液体渗透性,而在微柱顶面上的蘑菇状结构具有较小的间距,以提供更大的毛细管压力。通过电化学沉积方法在图案化的铜模板上制造复合 Cu-CNT 微柱。然后使用计时电流法技术在微柱的顶面上生长花椰菜状纳米结构,以提高毛细管结构的毛细管压力和热性能。成功制作微柱后,进行了一系列测试来量化灯芯结构的热性能。结果表明,与铜微柱相比,复合 Cu-CNT 微柱具有优异的热和腐蚀性能。此外,还进行了热阻网络分析以模拟制造的蘑菇形微柱阵列的热性能。将模型预测与实验结果进行比较,观察到良好的一致性。进行热阻网络分析以模拟制造的蘑菇形微柱阵列的热性能。将模型预测与实验结果进行比较,观察到良好的一致性。进行热阻网络分析以模拟制造的蘑菇形微柱阵列的热性能。将模型预测与实验结果进行比较,观察到良好的一致性。
更新日期:2019-10-02
down
wechat
bug