当前位置: X-MOL 学术Astropart. Phys. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
The Astrophysical Multimessenger Observatory Network (AMON): Performance and Science Program.
Astroparticle Physics ( IF 4.2 ) Pub Date : 2020-01-01 , DOI: 10.1016/j.astropartphys.2019.06.007
Hugo A. Ayala Solares , Stephane Coutu , D.F. Cowen , James J. DeLaunay , Derek B. Fox , Azadeh Keivani , Miguel Mostafá , Kohta Murase , Foteini Oikonomou , Monica Seglar-Arroyo , Gordana Tešić , Colin F. Turley

Corresponding author: Kelly Malone, Samuel Marinelli kmalone@lanl.gov, marine20@msu.edu ar X iv :1 90 5. 12 51 8v 1 [ as tr oph .H E ] 2 9 M ay 2 01 9 2 HAWC Collaboration We present TeV gamma-ray observations of the Crab Nebula, the standard reference source in ground-based gamma-ray astronomy, using data from the High Altitude Water Cherenkov (HAWC) Gamma-Ray Observatory. In this analysis we use two independent energy-estimation methods that utilize extensive air shower variables such as the core position, shower angle, and shower lateral energy distribution. In contrast, the previously published HAWC energy spectrum roughly estimated the shower energy with only the number of photomultipliers triggered. This new methodology yields a much improved energy resolution over the previous analysis and extends HAWC’s ability to accurately measure gamma-ray energies well beyond 100 TeV. The energy spectrum of the Crab Nebula is well fit to a log parabola shape ( dN dE = φ0 (E/7 TeV) −α−β ln(E/7 TeV) ) with emission up to at least 100 TeV. For the first estimator, a ground parameter that utilizes fits to the lateral distribution function to measure the charge density 40 meters from the shower axis, the best-fit values are φo=(2.35±0.04 −0.21)×10 (TeV cm s)−1, α=2.79±0.02 −0.03, and β=0.10±0.01 +0.01 −0.03. For the second estimator, a neural network which uses the charge distribution in annuli around the core and other variables, these values are φo=(2.31±0.02 −0.17)×10 (TeV cm s)−1, α=2.73±0.02 +0.03 −0.02, and β=0.06±0.01±0.02. The first set of uncertainties are statistical; the second set are systematic. Both methods yield compatible results. These measurements are the highest-energy observation of a gamma-ray source to date.

中文翻译:

天体物理多信使天文台网络 (AMON):性能和科学计划。

通讯作者: Kelly Malone, Samuel Marinelli kmalone@lanl.gov, Marine20@msu.edu ar X iv :1 90 5. 12 51 8v 1 [ as tr oph .HE ] 2 9 May 2 01 9 2 HAWC Collaboration 我们呈现蟹状星云的 TeV 伽马射线观测,是地基伽马射线天文学的标准参考源,使用来自高海拔水切伦科夫 (HAWC) 伽马射线天文台的数据。在此分析中,我们使用了两种独立的能量估计方法,它们利用了大量的空气淋浴变量,例如核心位置、淋浴角度和淋浴横向能量分布。相比之下,之前发表的 HAWC 能谱粗略估计了仅触发光电倍增管数量的淋浴能量。与之前的分析相比,这种新方法大大提高了能量分辨率,并将 HAWC 准确测量伽马射线能量的能力扩展到远远超过 100 TeV。蟹状星云的能谱非常适合对数抛物线形状 (dN dE = φ0 (E/7 TeV) -α-β ln(E/7 TeV) ),发射至少为 100 TeV。对于第一个估计器,利用横向分布函数拟合的地面参数来测量距阵雨轴 40 米处的电荷密度,最佳拟合值为 φo=(2.35±0.04 -0.21)×10 (TeV cm s) -1,α=2.79±0.02 -0.03,并且β=0.10±0.01 +0.01 -0.03。对于第二个估计器,一个神经网络,它使用核心周围环中的电荷分布和其他变量,这些值是 φo=(2.31±0.02 -0.17)×10 (TeV cm s)-1, α=2.73±0.02 + 0.03 -0.02,且β=0.06±0.01±0.02。第一组不确定性是统计性的;第二套是系统的。这两种方法产生兼容的结果。这些测量是迄今为止对伽马射线源的最高能量观测。
更新日期:2020-01-01
down
wechat
bug