当前位置: X-MOL 学术Adv. Phys. X › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Bimetallic nanostructures: combining plasmonic and catalytic metals for photocatalysis
Advances in Physics: X ( IF 6 ) Pub Date : 2019-05-30 , DOI: 10.1080/23746149.2019.1619480
Katherine Sytwu 1 , Michal Vadai 2 , Jennifer A. Dionne 2
Affiliation  

Light has emerged as a promising new reagent in chemical reactions, especially in enhancing the performance of metal nanoparticle catalysts. Certain metal nanoparticles support localized surface plasmon resonances (LSPRs) which convert incident light to strong electromagnetic fields, hot carriers, or heat for directing and improving chemical reactions. By combining plasmonically active metals with traditionally catalytic metals, bimetallic nanostructures promote simultaneous light conversion and strong molecular adsorption, expanding the library of light-controlled reactions. In this review, we cover three bimetallic geometries: antenna–reactor, core-shell, and alloyed nanoparticle systems. Each geometry hosts its own set of intermetallic interactions which can affect the photocatalytic response. While antenna–reactor systems rely exclusively on optical coupling between the plasmonic and catalytic metal to enhance reactivity, core-shell and alloy architectures introduce electronic interactions in addition to optical effects. These electronic interactions usually dampen the plasmonic response but also offer the potential for enhanced reactivity and product specificity. We review both state-of-the-art bimetallic photocatalysts as well as emerging research opportunities, including leveraging quantum effects, new computational methods to understand and predict photocatalysts, and atomic-scale architecting of materials.



中文翻译:

双金属纳米结构:结合等离子体金属和催化金属进行光催化

在化学反应中,光已成为有希望的新试剂,特别是在增强金属纳米粒子催化剂的性能方面。某些金属纳米粒子支持局部表面等离振子共振(LSPR),将入射光转换为强电磁场,热载流子或热量,以指导和改善化学反应。通过将等离子体活性金属与传统催化金属结合,双金属纳米结构可促进同时的光转换和强大的分子吸附,从而扩大了光控反应库。在这篇综述中,我们涵盖了三种双金属几何形状:天线反应堆,核壳和合金纳米粒子系统。每种几何形状都有其自己的一组金属间相互作用,这些相互作用会影响光催化反应。天线-反应器系统仅依靠等离激元和催化金属之间的光学耦合来增强反应性,而核-壳和合金结构则除了光学效应外还引入了电子相互作用。这些电子相互作用通常会抑制等离子体反应,但也提供增强反应性和产物特异性的潜力。我们将回顾最先进的双金属光催化剂以及新兴的研究机会,包括利用量子效应,了解和预测光催化剂的新计算方法以及材料的原子尺度设计。这些电子相互作用通常会抑制等离子体反应,但也提供增强反应性和产物特异性的潜力。我们将回顾最先进的双金属光催化剂以及新兴的研究机会,包括利用量子效应,了解和预测光催化剂的新计算方法以及材料的原子尺度设计。这些电子相互作用通常会抑制等离子体反应,但也提供增强反应性和产物特异性的潜力。我们将回顾最先进的双金属光催化剂以及新兴的研究机会,包括利用量子效应,了解和预测光催化剂的新计算方法以及材料的原子尺度设计。

更新日期:2019-05-30
down
wechat
bug