当前位置: X-MOL 学术BMC Genomics › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Genomics and Systems Biology at the "Century of Human Population Genetics" conference.
BMC Genomics ( IF 3.5 ) Pub Date : 2020-09-10 , DOI: 10.1186/s12864-020-06993-1
Tatiana V Tatarinova 1, 2, 3 , Ancha V Baranova 3, 4 , Anastasia A Anashkina 5 , Yuriy L Orlov 6, 7, 8
Affiliation  

This special issue of BMC Genomics presents works in the broad field of genomics as discussed at the “Century of Human Population Genetics” conference in Moscow in May 2019, held at Moscow State University (http://centenary-popgene.com/). The Conference discussed the current research of gene pools of the world’s nations, analysis of ancient DNA, judicial possibilities of human genetics, developemngt of population genetic databases, biobanks, as well as a set of newest additions to the toolbox of genomics technologies. It was an unique event, dedicated to the 100th anniversary of the first human population study performed in 1919, way before a function of DNA was discovered.

This journal issue also contains materials on human genomics and computational genetics presented at the “Systems Biology and Bioinformatics” (SBB-2019), a School for the Young Scientists held in Novosibirsk, Russia. Since 2008, this traditional school on bioinformatics is organized annually, under joint guidance of the Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences and the Novosibirsk State University (http://conf.bionet.nsc.ru/sbb2019/en/) [1, 2]. Traditionally, the Program Committee selects best conference materials for subsequent publications in BMC Genomics and related journals of BioMed Central [3,4,5,6]. The SBB Schools in Novosibirsk are the satellite events for the larger BGRS\SB (Bioinformatics of Genome Regulation and Structure \ Systems Biology) multiconference [1]. At the time of this paper writing, the BGRS\SB-2020 meeting in Novosibirsk just concluded (https://bgrssb.icgbio.ru/2020/), for the first time its twenty years history in the on-line format.

Therefore, this special issue on genomics and systems biology is accompanied by sister issues in other BMC journals in the fields of genetics, bioinformatics, microbiology, and medical genomics are published as a part of the following series: BMC Bioinformatics, BMC Medical Genomics, BMC Genetics, and BMC Medical Genetics, as well as in BMC Microbiology. In 2018, the conference highlights were organized into the Special Issues with reports from the BGRS\SB-2018 Conference and, earlier, from Belyaev Readings-2017 in Novosibirsk [7, 8]. The special issues in BMC Genomics were continued in 2019 [9, 10].

We open up this Special Issue by the human population genomics study on genetic determinants for the eye and hair color by Balanovska et al. [11] (This issue).

Predicting the eye and hair color from genotype became an established and widely used tool for both the forensic genetics and for a studies of ancient human populations. Accuracy of these predictions were extensively verified in the West and Central Europeans [12], while the studies in lightly pigmented people from border regions between Europe and Asia, including Caucasus and Ural are lacking. The authors collected 300 samples from across northern Eurasia, phenotyped and genotyped them using HIrisPlex-S markers [13], then estimated the predictive power of these biomarkers in Caucasus/Ural/Siberian populations. As genetic ancestries of these populations differ from that of West Europeans, Balanovska and co-authors hypothesized that they allelic spectrum might be also somewhat different. Thus, for all the 300 samples, the authors performed the exome sequencing and performed an enrichment of biomarker set with the 53 genes and intergenic regions associated with the eye/hair color. The association analysis replicated previous finsings concerning some known pigmentation related SNPs but also identified five new markers, with eye color prediction power for North Eurasians comparable with that of two well-known SNPs of this type. Four of these SNPs are located in HERС2 gene. The released dataset may be used for further advancement of population genetics and medical genetics; it describes the exome variation in some undercharacterized indigenous groups, previously studied by SNPs arrays only, but not by the sequencing approach.

The paper by Sandoval and colleagues [14] (this issue) continues topic of human population genetics with an excurse to Latin American and a journey of ‘Canaris’ people from Ecuador and Peru. According to pre-Hispanic history records, during the conquest and Inka expansion in Ecuador, many Andean families of the Cañar region were been displaced to several places, including Kañaris, a Quechua-speaking community of Peru mountains. The study focused on the genetic footprints of the ‘Cañaris’ of Cañar compared to other highland populations. The authors analyzed native Y chromosome haplotypes of local communities—three from Ecuador and seven from Peru – to show that individuals from the Cañar region do not share Y haplotypes with the Kañaris. Although no close genetic links between the Peruvian Kañaris (including Inkawasi) and Ecuadorian Cañar populations were shown, some congruence with historical records was observed [15].

Suntsova and Buzdin [16] (this issue) review compares human and great apes genomes to reveal genetic features distinguishing us from chimpanzees and making us humans. Even if these features are quantifiable, we still cannot identify with certainty the causative genes of “human identity” [17]. The authors summarize available information about genetic differences between humans and chimpanzees and potential functional impacts of these on differences on molecular, anatomical, physiological, and cognitive features of these species.

The paper by Kirill Danilov and colleagues [18] (this issue) investigates a performance of commonly used genotyping technologies, including Whole Genome (WGS) and Whole Exome Sequencing (WES) [13]. They conclude that WGS genotype callings exhibit higher overall precision within the selected variety of discordantly genotyped variants, a finding relevant to clinical diagnostics of common and rare variants.

The work by Vasilina Akulova et al. [19] (this issue) focuses on a basidiomycete tree fungus (Armillaria borealis) genome. This fungus causes the “white rot” root disease that weakens and even kills woody plants; it is common in Siberia and the Far East [20]. The de novo genome assembly and annotation were performed for the A. borealis species for the first time. Functional annotation analysis revealed about 22,000 protein-coding genes and provided data for further comparative analysis with other fungal species. Note that the work by Akulova et al. (this issue) refers to to BMC Plant Biol special issues published in parallel after PlantGen-2019 Conference (http://conf.bionet.nsc.ru/plantgen2019/en/), which continues as a series of special issues at BMC family journals [21].

Through offering schools for young scientists, we aim to support international exchanges and education in the field of computational biology and bioinformatics (https://bgrssb.icgbio.ru/2020/). We invite our worldwide readers to attend our next events – in Novosibirsk and Moscow (https://forum.digital/clinic, http://ngs.med-gen.ru/).

  1. 1.

    Baranova AV, Orlov YL. The papers presented at 7th Young Scientists School “Systems Biology and Bioinformatics” (SBB’15): Introductory Note. BMC Genet. 2016;17:S20.

  2. 2.

    Orlov YL, Baranova AV, Hofestaedt R, Kolchanov NA. Computational genomics at BGRS\SB-2016: introductory note. BMC Genomics. 2016;17(Suppl 14):996.

    Article Google Scholar

  3. 3.

    Orlov YL, Kolchanov NA, Hofestädt R, Wong L. Editorial - bioinformatics development at the BGRS\SB conference series: 10th anniversary. J Bioinforma Comput Biol. 2017;15(2):1702001.

    Article Google Scholar

  4. 4.

    Orlov YL, Baranova AV, Markel AL. Computational models in genetics at BGRS\SB-2016: introductory note. BMC Genet. 2016;17(Suppl 3):155.

    Article Google Scholar

  5. 5.

    Tatarinova TV, Chen M, Orlov YL. Bioinformatics research at BGRS-2018. BMC Bioinformatics. 2019;20(Suppl 1):33.

    Article Google Scholar

  6. 6.

    Orlov YL, Baranova AV. Editorial: bioinformatics of genome regulation and systems biology. Front Genet. 2020;11:625.

    Article Google Scholar

  7. 7.

    Orlov YL, Baranova AV, Hofestädt R, Kolchanov NA. Genomics at Belyaev conference – 2017. BMC Genomics. 2018;19(Suppl 3):79.

    Article Google Scholar

  8. 8.

    Orlov YL, Baranova AV, Tatarinova TV, Kolchanov NA. Genetics at Belyaev conference - 2017: introductory note. BMC Genet. 2017;18(Suppl 1):116.

    Article Google Scholar

  9. 9.

    Orlov YL., Kochetov A.V., Li G., Kolchanov N.A. Genomics research at bioinformatics of genome regulation and structure\ systems biology (BGRS\SB) conferences in Novosibirsk. BMC Genomics 2019;20(Suppl 3):322.

  10. 10.

    Orlov YL, Galieva ER, Melerzanov AV. Computer genomics research at the bioinformatics conference series in Novosibirsk. BMC Genomics. 2019;20(Suppl 7):537.

    Article Google Scholar

  11. 11.

    Balanovska E, Lukianova E, Kagazezheva J, Maurer A, Leybova N, Agdzhoyan A, Gorin I, Petrushenko V, Pylev V, Kostryukova E, Balanovsky O. Optimizing the genetic prediction of the eye and hair color for north Eurasian populations. BMC Genomics. 2020;21(Suppl 7). https://doi.org/10.1186/s12864-020-06923-1.

  12. 12.

    Candille SI, Absher DM, Beleza S, Bauchet M, McEvoy B, Garrison NA, Li JZ, Myers RM, Barsh GS, Tang H, Shriver MD. Genome-wide association studies of quantitatively measured skin, hair, and eye pigmentation in four European populations. PLoS One. 2012;7(10):e48294.

    CAS Article Google Scholar

  13. 13.

    Chaitanya L, Breslin K, Zuñiga S, Wirken L, Pośpiech E, Kukla-Bartoszek M, Sijen T. Peter de Knijff, Liu F., Branicki W., Kayser M., Walsh S. the HIrisPlex-S system for eye, hair and skin colour prediction from DNA: introduction and forensic developmental validation. Forensic Sci Int Genet. 2018;35:123–35.

    CAS Article Google Scholar

  14. 14.

    Sandoval JR, Lacerda DR, Jota MMS, Robles-Ruiz P, Danos P, Paz-y-Miño C, Wells S, Santos FR, Fujita R. Tracing the genetic history of the ‘Canaris’ from Ecuador and Peru using uniparental DNA markers. BMC Genomics. 2020;21(Suppl 7). https://doi.org/10.1186/s12864-020-06834-1.

  15. 15.

    Barbieri C, Barquera R, Arias L, Sandoval JR, Acosta O, Zurita C, et al. The current genomic landscape of Western South America: Andes, Amazonia, and Pacific coast. Mol Biol Evol. 2019;36(12):2698–713.

    CAS Article Google Scholar

  16. 16.

    Suntsova MV, Buzdin AA. Differences between human and chimpanzee genomes and their implications in gene expression, protein functions and biochemical properties of the two species. BMC Genomics. 2020;21(Suppl 7). https://doi.org/10.1186/s12864-020-06962-8.

  17. 17.

    Dong X, Wang X, Zhang F, Tian W. Genome-wide identification of regulatory sequences undergoing accelerated evolution in the human genome. Mol Biol Evol. 2016;33(10):2565–75.

    CAS Article Google Scholar

  18. 18.

    Danilov K.A., Baranova AV, Nikogosov DA, Musienko SV. A comparison of BeadChip and WGS genotyping outputs using partial validation by Sanger sequencing BMC Genomics 2020;21(Suppl 7). https://doi.org/10.1186/s12864-020-06919-x.

  19. 19.

    Akulova VS, Sharov VV, Aksyonova AI, Putintseva YA, Oreshkova NV, Feranchuk SI, Kuzmin DA, Pavlov IN, Litovka YA, Krutovsky KV. De novo sequencing, assembly and functional annotation of Armillaria borealis genome BMC Genomics. 2020;21(Suppl 7). https://doi.org/10.1186/s12864-020-06964-6.

  20. 20.

    Kolesnikova AI, Putintseva YA, Simonov EP, Biriukov VV, Oreshkova NV, Pavlov IN, Sharov VV, Kuzmin DA, Anderson JB, Krutovsky KV. Mobile genetic elements explain size variation in the mitochondrial genomes of four closely-related Armillaria species. BMC Genomics. 2019;20(1):351.

    Article Google Scholar

  21. 21.

    Orlov YL, Baranova AV, Salina EA. Computational plant bioscience at BGRS\SB-2016: introductory note. BMC Plant Biol. 2016;16(Suppl 3):243.

    Article Google Scholar

Download references

We are grateful to Professors O.P. Balanovsky and G.S. Lebedev for the organization of the “Century of Human Population Genetics” and Digital Medicine conferences in Moscow in 2019 and for compiling materials for the SBB-2019 issues at BioMed Central journals.

This work was supported by a grant from the Ministry of Education and Science of the Russian Federation (project identifier RFMEFI60819X0278).

The guest editors of the special issue are grateful to the conference and school organizing committee members and to all the reviewers who helped in the peer-review and the language editing. We acknowledge Mikhail Ponomarenko and Vadim Efimov (Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia), Hildegard Nikki Hall (University of Edinburgh, UK), Piramanayagam Shanmughavel (Bharatiar University, India), Haiqing Zhao (Columbia University Medical Center, USA), Vitaly Gursky (St.Petersburg Polytech University, Russia), Olga Zolotareva (Bielefeld University, Germany), Elvira Galieva (Novosibirsk State University, Russia), Alexey Kolodkin (University of Luxemburg), Alexander Ratushny and Irina Medvedeva (Bristol Myers Squibb, USA), Olga Arkova (Institute of Gene Biology RAS, Moscow), Larissa Litvinova (I.Kant Baltic Federal University, Kaliningrad), Paul Jones (AIC Inc., USA), Shuan Li (University of Rhode Island, USA), Mengting Liu (University of Southern California, USA), Lydia Manor (AIC Inc., USA), Guohao Wang (NIH, USA), Nina Oparina (Karolinska Institut, Sweden), Stanislav Rybtsov (University of Edinburgh, UK), Anastasia Efimenko (Moscow State University, Russia), Ed Hollox (University of Leicester, USA), Igor Sharakhov (Virginia Tech, USA), Ludmila Zakharenko (Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia), Alexander Konev (NRC «Kurchatov Institute» - PNPI, Gatchina, Russia), Angelica Timofeeva (Moscow State University, Russia), Anatoly Ivashchenko (al-Farabi Kazakh National University, Kazakhstan), Ekaterina Marakasova (US FDA, USA), Chris Tyler-Smith (Sanger Centre, UK), Dmitry Karpov (Institute of Biomedical Chemistry RAS), Nikolai Barlev (Institute of Cytology RAS, St.-Petersburg, Russia), Elena Leberfarb (Novosibirsk State Medical University, Russia), Lyubov Chuvakova (Moscow State University, Russia), Andrei Krivtsov (Dana Farber Cancer Institute, USA), Olga Tarasova (Sechenov University, Moscow, Russia), Nadezhda Antipova (Moscow State University, Russia), Oleg Gusev (RIKEN, Japan), Konstantin Gunbin and Nataly Bondar (Novosibirsk State University, Russia), Hua Zhong (Fred Hutchinson Cancer Research Center, USA), Elena Zaklyazminskaya (Petrovsky Russian Research Centre of Surgery, Russia), Michael Linderman (Icahn School of Medicine at Mount Sinai, USA), Sergei Fedotov (MEPhI, Moscow, Russia), Igor Berezovsky (Bioinformatics Institute, Singapore), Andreas Laner (Medizinisch Genetisches Zentrum, Munich, Germany), Arun Kumar (Shanmugha Arts Science Technology and Research Academy, India), Lars Fehren-Schmitz (University of California Santa Cruz, USA), Mikhail Sadovsky (Siberian Federal University, Krasnoyarsk, Russia), Vasily Ramensky (National Research Institute of Preventive Medicine, Moscow, Russia), Patrick Harrison (University College Cork, Ireland).

About this supplement

This article has been published as part of BMC Genomics Volume 21 Supplement 7, 2020: Selected Topics in “Systems Biology and Bioinformatics” - 2019: genomics. The full contents of the supplement are available online at https://bmcgenomics.biomedcentral.com/articles/supplements/volume-21-supplement-7.

Publication of this article was not covered by sponsorship.

Affiliations

  1. La Verne University, La Verne, CA, 91750, USA

    Tatiana V. Tatarinova

  2. Department of Fundamental Biology and Biotechnology, Siberian Federal University, 660074, Krasnoyarsk, Russia

    Tatiana V. Tatarinova

  3. George Mason University, Fairfax, VA, 22030, USA

    Tatiana V. Tatarinova & Ancha V. Baranova

  4. Research Centre for Medical Genetics, 115522, Moscow, Russia

    Ancha V. Baranova

  5. Engelhardt Institute of Molecular Biology RAS, 119991, Moscow, Russia

    Anastasia A. Anashkina

  6. The Digital Health Institute, I.M.Sechenov First Moscow State Medical University (Sechenov University), 119991, Moscow, Russia

    Yuriy L. Orlov

  7. Institute of Cytology and Genetics SB RAS, 630090, Novosibirsk, Russia

    Yuriy L. Orlov

  8. Novosibirsk State University, 630090, Novosibirsk, Russia

    Yuriy L. Orlov

Authors
  1. Tatiana V. TatarinovaView author publications

    You can also search for this author in PubMed Google Scholar

  2. Ancha V. BaranovaView author publications

    You can also search for this author in PubMed Google Scholar

  3. Anastasia A. AnashkinaView author publications

    You can also search for this author in PubMed Google Scholar

  4. Yuriy L. OrlovView author publications

    You can also search for this author in PubMed Google Scholar

Contributions

TT, AB, and YO are guest editors of the special post-conference issues and Program Committee members of SBB-2019 School. AA is the invited editor and the committee member of the Conference. All the authors read, revised, and approved the final manuscript.

Corresponding author

Correspondence to Yuriy L. Orlov.

Competing interests

The authors declare that they have no competing interests.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Reprints and Permissions

Verify currency and authenticity via CrossMark

Cite this article

Tatarinova, T.V., Baranova, A.V., Anashkina, A.A. et al. Genomics and Systems Biology at the “Century of Human Population Genetics” conference. BMC Genomics 21, 592 (2020). https://doi.org/10.1186/s12864-020-06993-1

Download citation

  • Published:

  • DOI: https://doi.org/10.1186/s12864-020-06993-1



中文翻译:


“人类群体遗传学世纪”会议上的基因组学和系统生物学。



本期 BMC Genomics 特刊介绍了 2019 年 5 月在莫斯科国立大学 (http://centenary-popgene.com/) 举行的莫斯科“人类群体遗传学世纪”会议上讨论的基因组学广泛领域的工作。会议讨论了世界各国基因库的当前研究、古代DNA的分析、人类遗传学的司法可能性、人口遗传数据库、生物库的开发以及基因组学技术工具箱的最新补充。这是一次独特的活动,旨在纪念 1919 年进行的首次人口研究 100 周年,远早于 DNA 功能被发现。


本期期刊还包含在俄罗斯新西伯利亚举办的青年科学家学院“系统生物学和生物信息学”(SBB-2019) 上发表的有关人类基因组学和计算遗传学的材料。自 2008 年以来,在俄罗斯科学院西伯利亚分院细胞学和遗传学研究所和新西伯利亚国立大学的联合指导下,这一传统的生物信息学学校每年举办一次 (http://conf.bionet.nsc.ru/ sbb2019/en/) [1, 2]。传统上,程序委员会会为后续在 BMC Genomics 和 BioMed Central 相关期刊上发表的论文选择最佳会议材料 [3,4,5,6]。新西伯利亚的 SBB 学校是大型 BGRS\SB(基因组调控和结构生物信息学 \ 系统生物学)多重会议的卫星活动 [1]。在撰写本文时,新西伯利亚的 BGRS\SB-2020 会议刚刚结束 (https://bgrssb.icgbio.ru/2020/),这是其二十年来首次以在线形式召开。


因此,本期关于基因组学和系统生物学的特刊与遗传学、生物信息学、微生物学和医学基因组学领域的其他 BMC 期刊的姊妹刊一起作为以下系列的一部分出版:BMC Bioinformatics、BMC Medical Genomics、BMC遗传学、BMC 医学遗传学以及 BMC 微生物学。 2018 年,会议亮点被组织成特刊,其中包括 BGRS\SB-2018 会议的报告以及之前来自新西伯利亚的 Belyaev Readings-2017 的报告 [7, 8]。 BMC Genomics 特刊于 2019 年继续出版[9, 10]。


我们通过 Balanovska 等人对眼睛和头发颜色的遗传决定因素进行的人类基因组学研究开启了本期特刊。 [11](本期)。


根据基因型预测眼睛和头发的颜色已成为法医遗传学和古代人类研究中广泛使用的既定工具。这些预测的准确性在西欧和中欧人中得到了广泛验证[12],但缺乏对欧洲和亚洲边境地区(包括高加索和乌拉尔)浅肤色人群的研究。作者从欧亚大陆北部收集了 300 个样本,使用 HIrisPlex-S 标记对它们进行表型和基因分型 [13],然后估计这些生物标记在高加索/乌拉尔/西伯利亚人群中的预测能力。由于这些人群的遗传祖先与西欧人不同,巴拉诺夫斯卡和合著者假设他们的等位基因谱也可能有所不同。因此,对于所有 300 个样本,作者进行了外显子组测序,并对与眼睛/头发颜色相关的 53 个基因和基因间区域进行了生物标志物集的富集。关联分析重复了之前关于一些已知的色素沉着相关 SNP 的研究结果,但还确定了 5 个新标记,其对北欧亚人眼睛颜色的预测能力与该类型的两个众所周知的 SNP 相当。其中四个 SNP 位于HERС2基因中。发布的数据集可用于群体遗传学和医学遗传学的进一步发展;它描述了一些特征不足的土著群体的外显子组变异,以前仅通过 SNP 阵列进行研究,而不是通过测序方法进行研究。


Sandoval 及其同事的论文 [14](本期)继续讨论人类群体遗传学的主题,讲述了拉丁美洲的旅行以及来自厄瓜多尔和秘鲁的“Canaris”人的旅程。根据前西班牙历史记录,在厄瓜多尔的征服和印加扩张期间,卡纳尔地区的许多安第斯家庭流离失所到几个地方,包括秘鲁山区讲盖丘亚语的社区卡纳里斯。该研究的重点是与其他高地种群相比,卡尼亚尔“卡纳里斯”的遗传足迹。作者分析了当地社区的本地 Y 染色体单倍型(其中 3 个来自厄瓜多尔,7 个来自秘鲁),结果表明来自卡尼亚尔地区的个体与卡纳里人并不共享 Y 染色体单倍型。尽管秘鲁卡尼亚人(包括因卡瓦西人)和厄瓜多尔卡尼亚人种群之间没有显示出密切的遗传联系,但观察到与历史记录的一些一致性[15]。


Suntsova 和 Buzdin [16](本期)综述比较了人类和类人猿基因组,以揭示区分我们与黑猩猩并使我们成为人类的遗传特征。即使这些特征是可量化的,我们仍然无法确定“人类身份”的致病基因[17]。作者总结了有关人类和黑猩猩之间遗传差异的现有信息,以及这些差异对这些物种的分子、解剖、生理和认知特征差异的潜在功能影响。


Kirill Danilov 及其同事的论文 [18](本期)研究了常用基因分型技术的性能,包括全基因组 (WGS) 和全外显子组测序 (WES) [13]。他们得出的结论是,WGS 基因型识别在选定的多种不一致基因型变异中表现出更高的整体精度,这一发现与常见和罕见变异的临床诊断相关。


Vasilina Akulova 等人的作品。 [19](本期)重点关注担子菌树真菌(北极蜜环菌)基因组。这种真菌会引起“白腐”根部疾病,削弱甚至杀死木本植物;它在西伯利亚和远东地区很常见[20]。首次对北极菌进行了从头基因组组装和注释。功能注释分析揭示了约 22,000 个蛋白质编码基因,并为与其他真菌物种的进一步比较分析提供了数据。请注意 Akulova 等人的工作。 (本期)指的是 PlantGen-2019 会议之后并行出版的 BMC Plant Biol 特刊 (http://conf.bionet.nsc.ru/plantgen2019/en/),该特刊继续作为 BMC 家族的一系列特刊期刊[21]。


通过为年轻科学家提供学校,我们的目标是支持计算生物学和生物信息学领域的国际交流和教育(https://bgrssb.icgbio.ru/2020/)。我们邀请全球读者参加我们在新西伯利亚和莫斯科举办的下一场活动(https://forum.digital/clinic、http://ngs.med-gen.ru/)。

  1. 1.


    巴拉诺瓦 AV,奥尔洛夫 YL。第七届青年科学家学院“系统生物学和生物信息学”(SBB'15) 上发表的论文:介绍性说明。 BMC 基因。 2016;17:S20。

  2. 2.


    奥尔洛夫 YL、巴拉诺瓦 AV、霍夫斯塔特 R、科尔查诺夫 NA。 BGRS\SB-2016 的计算基因组学:介绍性说明。 BMC 基因组学。 2016;17(补编 14):996。

     文章谷歌学术

  3. 3.


    Orlov YL、Kolchanov NA、Hofestädt R、Wong L. 社论 - BGRS\SB 会议系列的生物信息学发展:十周年。 J Bioinforma 计算生物学。 2017;15(2):1702001。

     文章谷歌学术

  4. 4.


    奥尔洛夫 YL、巴拉诺瓦 AV、马克尔 AL。 BGRS\SB-2016 中的遗传学计算模型:介绍性说明。 BMC 基因。 2016;17(增补3):155。

     文章谷歌学术

  5. 5.


    Tatarinova TV,陈 M,奥尔洛夫 YL。 BGRS-2018 的生物信息学研究。 BMC 生物信息学。 2019;20(补编1):33。

     文章谷歌学术

  6. 6.


    奥尔洛夫 YL,巴拉诺瓦 AV。社论:基因组调控和系统生物学的生物信息学。前基因。 2020;11:625。

     文章谷歌学术

  7. 7.


    奥尔洛夫 YL、巴拉诺瓦 AV、霍夫斯塔德 R、科尔查诺夫 NA。 Belyaev 会议上的基因组学 – 2017 年。BMC Genomics。 2018;19(增补3):79。

     文章谷歌学术

  8. 8.


    Orlov YL、Baranova AV、Tatarinova TV、Kolchanov NA。 Belyaev 会议上的遗传学 - 2017:介绍性说明。 BMC 基因。 2017;18(增补1):116。

     文章谷歌学术

  9. 9.


    Orlov YL.、Kochetov AV、Li G.、Kolchanov NA 在新西伯利亚举行的基因组调控生物信息学和结构\系统生物学 (BGRS\SB) 会议上进行基因组学研究。 BMC Genomics 2019;20(增刊 3):322。

  10. 10.


    奥尔洛夫 YL、加利耶娃 ER、梅勒扎诺夫 AV。新西伯利亚生物信息学系列会议上的计算机基因组学研究。 BMC 基因组学。 2019;20(补编7):537。

     文章谷歌学术

  11. 11.


    Balanovska E、Lukianova E、Kagazezheva J、Maurer A、Leybova N、Agdzhoyan A、Gorin I、Petrushenko V、Pylev V、Kostryukova E、Balanovsky O。优化北欧亚人群眼睛和头发颜色的遗传预测。 BMC 基因组学。 2020;21(补编7)。 https://doi.org/10.1186/s12864-020-06923-1。

  12. 12.


    Candille SI、Absher DM、Beleza S、Bauchet M、McEvoy B、Garrison NA、Li JZ、Myers RM、Barsh GS、Tang H、Shriver MD。对四个欧洲人群的皮肤、头发和眼睛色素沉着进行定量测量的全基因组关联研究。公共科学图书馆一号。 2012;7(10):e48294。


    CAS 文章谷歌学术

  13. 13.


    Chaitanya L、Breslin K、Zuñiga S、Wirken L、Pośpiech E、Kukla-Bartoszek M、Sijen T. Peter de Knijff、Liu F.、Branicki W.、Kayser M.、Walsh S. HIrisPlex-S 眼科系统,根据 DNA 预测头发和肤色:简介和法医发育验证。法医学国际遗传学。 2018;35:123–35。


    CAS 文章谷歌学术

  14. 14.


    Sandoval JR, Lacerda DR, Jota MMS, Robles-Ruiz P, Danos P, Paz-y-Miño C, Wells S, Santos FR, Fujita R. 使用单亲 DNA 标记追踪来自厄瓜多尔和秘鲁的“Canaris”的遗传历史。 BMC 基因组学。 2020;21(补编7)。 https://doi.org/10.1186/s12864-020-06834-1。

  15. 15.


    Barbieri C、Barquera R、Arias L、Sandoval JR、Acosta O、Zurita C 等。南美洲西部当前的基因组景观:安第斯山脉、亚马逊流域和太平洋沿岸。摩尔生物进化。 2019;36(12):2698–713。


    CAS 文章谷歌学术

  16. 16.

  17. 17.


    董X,王X,张F,田W。人类基因组中经历加速进化的调控序列的全基因组鉴定。摩尔生物进化。 2016;33(10):2565–75。


    CAS 文章谷歌学术

  18. 18.

  19. 19.


    Akulova VS、Sharov VV、Aksyonova AI、Putintseva YA、Oreshkova NV、Feranchuk SI、Kuzmin DA、Pavlov IN、Litovka YA、Krutovsky KV。 BMC Genomics北极蜜环菌基因组的从头测序、组装和功能注释。 2020;21(补编7)。 https://doi.org/10.1186/s12864-020-06964-6。

  20. 20.


    Kolesnikova AI、Putintseva YA、西蒙诺夫 EP、比留科夫 VV、奥列什科娃 NV、巴甫洛夫 IN、沙罗夫 VV、库兹明 DA、安德森 JB、克鲁托夫斯基 KV。移动遗传元件解释了四种密切相关的蜜环菌物种线粒体基因组的大小变化。 BMC 基因组学。 2019;20(1):351。

     文章谷歌学术

  21. 21.


    奥尔洛夫 YL、巴拉诺瓦 AV、萨利纳 EA。 BGRS\SB-2016 的计算植物生物科学:介绍性说明。 BMC 植物生物学。 2016;16(增补3):243。

     文章谷歌学术

 下载参考资料


我们感谢 OP Balanovsky 和 ​​GS Lebedev 教授于 2019 年在莫斯科组织了“人类群体遗传学世纪”和数字医学会议,并为 BioMed Central 期刊的 SBB-2019 期编写了材料。


这项工作得到了俄罗斯联邦教育和科学部的资助(项目编号 RFMEFI60819X0278)。


该特刊的客座编辑感谢会议和学校组委会成员以及所有在同行评审和语言编辑中提供帮助的审稿人。我们感谢 Mikhail Ponomarenko 和 Vadim Efimov(俄罗斯新西伯利亚 SB RAS 细胞学和遗传学研究所)、Hildegard Nikki Hall(英国爱丁堡大学)、Piramanayagam Shanmughavel(印度巴拉蒂亚尔大学)、赵海清(美国哥伦比亚大学医学中心) )、Vitaly Gursky(俄罗斯圣彼得堡理工大学)、Olga Zolotareva(德国比勒菲尔德大学)、Elvira Galieva(俄罗斯新西伯利亚国立大学)、Alexey Kolodkin(卢森堡大学)、Alexander Ratushny 和 Irina Medvedeva(百时美施贵宝) ,美国),Olga Arkova(俄罗斯科学院基因生物学研究所,莫斯科),Larissa Litvinova(I.康德波罗的海联邦大学,加里宁格勒),Paul Jones(AIC Inc.,美国),Shuan Li(罗德岛大学,美国),刘梦婷(美国南加州大学)、Lydia Manor(美国 AIC 公司)、王国豪(美国国立卫生研究院)、Nina Oparina(瑞典卡罗林斯卡学院)、Stanislav Rybtsov(英国爱丁堡大学)、Anastasia Efimenko (俄罗斯莫斯科国立大学)、Ed Hollox(美国莱斯特大学)、Igor Sharakhov(美国弗吉尼亚理工大学)、Ludmila Zakharenko(俄罗斯新西伯利亚 SB RAS 细胞学和遗传学研究所)、Alexander Konev(NRC «库尔恰托夫研究所) » - PNPI,加特契纳,俄罗斯)、Angelica Timofeeva(莫斯科国立大学,俄罗斯)、Anatoly Ivashchenko(al-Farabi 哈萨克国立大学,哈萨克斯坦)、Ekaterina Marakasova(美国 FDA,美国)、Chris Tyler-Smith(桑格中心,英国) )、Dmitry Karpov(RAS 生物医学化学研究所)、Nikolai Barlev(RAS 细胞学研究所,圣路易斯)-圣彼得堡,俄罗斯),Elena Leberfarb(新西伯利亚国立医科大学,俄罗斯),Lyubov Chuvakova(莫斯科国立大学,俄罗斯),Andrei Krivtsov(达纳法伯癌症研究所,美国),Olga Tarasova(谢切诺夫大学,莫斯科,俄罗斯),Nadezhda Antipova(莫斯科国立大学,俄罗斯)、Oleg Gusev(RIKEN,日本)、Konstantin Gunbin 和 Nataly Bondar(新西伯利亚国立大学,俄罗斯)、华忠(Fred Hutchinson 癌症研究中心,美国)、Elena Zaklyazminskaya(彼得罗夫斯基俄罗斯研究中心)外科,俄罗斯)、Michael Linderman(西奈山伊坎医学院,美国)、Sergei Fedotov(MEPhI,莫斯科,俄罗斯)、Igor Berezovsky(生物信息研究所,新加坡)、Andreas Laner(Medizinisch Genetisches Zentrum,慕尼黑,德国), Arun Kumar(印度 Shanmugha 艺术科学技术与研究学院)、Lars Fehren-Schmitz(美国加州大学圣克鲁斯分校)、Mikhail Sadovsky(俄罗斯克拉斯诺亚尔斯克西伯利亚联邦大学)、Vasily Ramensky(国家预防医学研究所,莫斯科,俄罗斯),帕特里克·哈里森(帕特里克·哈里森)(爱尔兰科克大学)。

 关于本补充


本文已作为BMC Genomics 第 21 卷增刊 7, 2020:“系统生物学和生物信息学”精选主题 - 2019:基因组学的一部分发表。该补充剂的完整内容可在线获取:https://bmcgenomics.biomedcentral.com/articles/supplements/volume-21-supplement-7。


这篇文章的发表没有得到赞助。

 隶属关系


  1. 拉文大学,拉文,加利福尼亚州,91750,美国

     塔蒂亚娜·V·塔塔里诺娃


  2. 西伯利亚联邦大学基础生物学和生物技术系,660074,克拉斯诺亚尔斯克,俄罗斯

     塔蒂亚娜·V·塔塔里诺娃


  3. 乔治梅森大学,费尔法克斯,弗吉尼亚州,22030,美国


    塔蒂亚娜·V·塔塔里诺娃 & 安查·V·巴拉诺娃


  4. 医学遗传学研究中心,115522,莫斯科,俄罗斯

     安查诉巴拉诺娃


  5. 恩格哈特分子生物学研究所 RAS,119991,莫斯科,俄罗斯

     阿纳斯塔西娅·阿纳什金娜


  6. 数字健康研究所,莫斯科国立谢切诺夫第一医科大学(谢切诺夫大学),119991,莫斯科,俄罗斯

     尤里·奥尔洛夫


  7. 细胞学和遗传学研究所 SB RAS,630090,新西伯利亚,俄罗斯

     尤里·奥尔洛夫


  8. 新西伯利亚国立大学,630090,新西伯利亚,俄罗斯

     尤里·奥尔洛夫

 作者

  1. Tatiana V. Tatarinova查看作者出版物


    您也可以在PubMed中搜索该作者 谷歌学术


  2. Ancha V. Baranova查看作者出版物


    您也可以在PubMed中搜索该作者 谷歌学术


  3. Anastasia A. Anashkina查看作者出版物


    您也可以在PubMed中搜索该作者 谷歌学术


  4. Yuriy L. Orlov查看作者出版物


    您也可以在PubMed中搜索该作者 谷歌学术

 贡献


TT、AB 和 YO 是会后特刊的客座编辑,也是 SBB-2019 学校的程序委员会成员。 AA 是会议的特邀编辑和委员会成员。所有作者阅读、修改并批准了最终稿件。

 通讯作者


通讯作者:尤里·奥尔洛夫。

 利益争夺


作者声明他们没有利益冲突。

 出版商备注


施普林格·自然对于已出版的地图和机构隶属关系中的管辖权主张保持中立。


开放获取本文根据知识共享署名 4.0 国际许可证获得许可,该许可证允许以任何媒介或格式使用、共享、改编、分发和复制,只要您对原作者和来源给予适当的认可,提供知识共享许可的链接,并指出是否进行了更改。本文中的图像或其他第三方材料包含在文章的知识共享许可中,除非材料的出处中另有说明。如果文章的知识共享许可中未包含材料,并且您的预期用途不受法律法规允许或超出了允许的用途,则您需要直接获得版权所有者的许可。要查看此许可证的副本,请访问 http://creativecommons.org/licenses/by/4.0/。知识共享公共领域奉献豁免 (http://creativecommons.org/publicdomain/zero/1.0/) 适用于本文中提供的数据,除非数据的信用额度中另有说明。

 转载和许可

Verify currency and authenticity via CrossMark

 引用这篇文章


Tatarinova、TV、Baranova、AV、Anashkina、AA等。 “人类群体遗传学世纪”会议上的基因组学和系统生物学。 BMC 基因组学21, 592 (2020)。 https://doi.org/10.1186/s12864-020-06993-1

 下载引文


  • 发布日期


  • DOI https://doi.org/10.1186/s12864-020-06993-1

更新日期:2020-09-10
down
wechat
bug