当前位置: X-MOL 学术J. Vac. Sci. Technol. A › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Etch selectivity during plasma-assisted etching of SiO2and SiNx: Transitioning from reactive ion etching to atomic layer etching
Journal of Vacuum Science & Technology A ( IF 2.4 ) Pub Date : 2020-08-04 , DOI: 10.1116/6.0000395
Ryan J. Gasvoda 1 , Zhonghao Zhang 2 , Scott Wang 2 , Eric A. Hudson 2 , Sumit Agarwal 1
Affiliation  

Continued downscaling of semiconductor devices has placed stringent constraints on all aspects of the fabrication process including plasma-assisted anisotropic etching. To address manufacturing challenges associated with atomic-scale control, material selectivity, etch fidelity, and increasingly complex device architectures, reactive ion etching (RIE) is transitioning to plasma-assisted atomic layer etching (ALE). Even though the number of elements used in the semiconductor devices has increased several-fold over the last four decades, SiO2 and SiNx remain the most commonly used dielectric materials. In fact, fluorocarbon based, plasma-assisted ALE processes for SiO2 and SiNx have already been integrated into semiconductor manufacturing, including etching of self-aligned contacts for advanced transistors. However, several challenges remain in achieving ultrahigh etch selectivity of SiO2 over SiNx and vice versa. In this article, first, the authors provide a focused review on selective RIE of SiO2 over SiNx and contrast this with ALE. A particular focus is given to the etching mechanism, including the role of the mixing layer composition and thickness at the fluorocarbon-SiO2 interface, the F-to-C ratio in the fluorocarbon parent gas, H2 dilution, surface composition on the nonetched SiNx, ion flux and energy, Ar plasma activation duration in ALE, and chamber memory effects. Second, we discuss the reverse case of selectively etching SiNx over SiO2 with careful attention given to the role of novel hydrofluorocarbon gases and dilution of the primary feed gas with other gases such as CH4 and NO. In the second part of this review, we also discuss how novel surface chemistries are enabled by the introduction of ALE, which include selective (NH4)2SiF6 formation on the SiNx surface and selective surface prefunctionalization of SiO2 to enable ultrahigh selectivity. Through this review, the authors hope to provide the readers with an exhaustive knowledge of the selectivity mechanisms for RIE of SiO2 over SiNx and vice versa, which provides a basis for developing future highly material-selective ALE processes.

中文翻译:

SiO2和SiNx的等离子体辅助蚀刻过程中的蚀刻选择性:从反应性离子蚀刻过渡到原子层蚀刻

半导体器件的持续缩小尺寸已经对包括等离子体辅助各向异性蚀刻在内的制造工艺的各个方面施加了严格的限制。为了解决与原子尺度控制,材料选择性,蚀刻保真度和日益复杂的设备架构相关的制造挑战,反应性离子蚀刻(RIE)正在过渡到等离子体辅助原子层蚀刻(ALE)。即使在过去的四十年中半导体器件中使用的元素数量增加了几倍,SiO 2和SiN x仍然是最常用的介电材料。实际上,用于SiO 2和SiN x的基于碳氟化合物的等离子辅助ALE工艺已经集成到半导体制造中,包括蚀刻先进晶体管的自对准触点。然而,在实现SiO 2相对于SiN x的超高蚀刻选择性方面仍然存在一些挑战,反之亦然。在本文中,首先,作者针对SiO 2在SiN x上的选择性RIE进行了重点综述,并将其与ALE进行了对比。蚀刻机理特别受关注,包括混合层组成和碳氟化合物-SiO 2界面处的厚度的作用,碳氟化合物母气中的F-C比,H 2稀释,未蚀刻的表面成分氮化硅X,离子通量和能量,ALE中Ar的等离子体激活持续时间以及腔室记忆效应。其次,我们讨论了在SiO 2上选择性刻蚀SiN x的相反情况,并仔细关注了新型氢氟烃气体的作用以及用其他气体(例如CH 4和NO)稀释一次进料气体的作用。在本综述的第二部分中,我们还将讨论如何通过引入ALE来实现新颖的表面化学,其中包括在SiN x表面上形成选择性(NH 42 SiF 6以及对SiO 2进行选择性表面预官能化以实现超高选择性。通过这篇综述,作者希望为读者提供有关SiN x上SiO 2 RIE的选择性机理的详尽知识,反之亦然,这为开发未来的高材料选择性ALE工艺提供了基础。
更新日期:2020-09-10
down
wechat
bug