当前位置: X-MOL 学术Front. Marine Sci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Scaling Global Warming Impacts on Ocean Ecosystems: Lessons From a Suite of Earth System Models
Frontiers in Marine Science ( IF 2.8 ) Pub Date : 2020-09-10 , DOI: 10.3389/fmars.2020.00698
Alexis Bahl , Anand Gnanadesikan , Marie-Aude S. Pradal

An important technique used by climate modelers to isolate the impacts of increasing greenhouse gasses on Earth System processes is to simulate the impact of an abrupt increase in carbon dioxide. The spatial pattern of change provides a “fingerprint” that is generally much larger than natural variability. Insofar as the response to radiative forcing is linear (the impact of quadrupling CO2 is twice the impact of doubling CO2) this fingerprint can then be used to estimate the impact of historical greenhouse gas forcing. However, the degree to which biogeochemical cycles respond linearly to radiative forcing has rarely been tested. In this paper, we evaluate which ocean biogeochemical fields are likely to respond linearly to changing radiative forcing, which ones do not, and where linearity breaks down. We also demonstrate that the representation of lateral mixing by mesoscale eddies, which varies significantly across climate models, plays an important role in modulating the breakdown of linearity. Globally integrated surface rates of biogeochemical cycling (primary productivity, particulate export) respond in a relatively linear fashion and are only moderately sensitive to mixing. By contrast, the habitability of the interior ocean (as determined by hypoxia and calcite supersaturation) behaves non-linearly and is very sensitive to mixing. This is because the deep ocean, as well as certain regions in the surface ocean, are very sensitive to the magnitude of deep wintertime convection. The cessation of convection under global warming is strongly modulated by the representation of eddy mixing.

中文翻译:

衡量全球变暖对海洋生态系统的影响:来自一套地球系统模型的经验教训

气候建模者用来隔离温室气体增加对地球系统过程的影响的一项重要技术是模拟二氧化碳突然增加的影响。变化的空间模式提供了一个“指纹”,通常比自然变化大得多。只要对辐射强迫的响应是线性的(二氧化碳翻四倍的影响是二氧化碳翻倍的影响的两倍),那么这个指纹就可以用来估计历史温室气体强迫的影响。然而,很少有人测试生物地球化学循环对辐射强迫的线性响应程度。在本文中,我们评估了哪些海洋生物地球化学场可能对不断变化的辐射强迫做出线性响应,哪些没有,以及线性破坏的位置。我们还证明了中尺度涡旋对横向混合的表示,在气候模型中差异很大,在调节线性分解方面起着重要作用。生物地球化学循环的全球综合表面速率(初级生产力,颗粒出口)以相对线性的方式响应,并且对混合仅适度敏感。相比之下,内部海洋的宜居性(由缺氧和方解石过饱和度决定)表现为非线性并且对混合非常敏感。这是因为深海以及表层海洋的某些区域对冬季深层对流的强度非常敏感。在全球变暖下对流的停止受到涡流混合的强烈调节。它在气候模型之间差异很大,在调节线性分解方面起着重要作用。生物地球化学循环的全球综合表面速率(初级生产力,颗粒出口)以相对线性的方式响应,并且对混合仅适度敏感。相比之下,内部海洋的宜居性(由缺氧和方解石过饱和度决定)表现为非线性并且对混合非常敏感。这是因为深海以及表层海洋的某些区域对冬季深层对流的强度非常敏感。在全球变暖下对流的停止受到涡流混合的强烈调节。它在气候模型之间差异很大,在调节线性分解方面起着重要作用。生物地球化学循环的全球综合表面速率(初级生产力、颗粒输出)以相对线性的方式响应,并且对混合仅适度敏感。相比之下,内部海洋的宜居性(由缺氧和方解石过饱和度决定)表现为非线性并且对混合非常敏感。这是因为深海以及表层海洋的某些区域对冬季深层对流的强度非常敏感。在全球变暖下对流的停止受到涡流混合的强烈调节。生物地球化学循环的全球综合表面速率(初级生产力,颗粒出口)以相对线性的方式响应,并且对混合仅适度敏感。相比之下,内部海洋的宜居性(由缺氧和方解石过饱和度决定)表现为非线性并且对混合非常敏感。这是因为深海以及表层海洋的某些区域对冬季深层对流的强度非常敏感。在全球变暖下对流的停止受到涡流混合的强烈调节。生物地球化学循环的全球综合表面速率(初级生产力,颗粒出口)以相对线性的方式响应,并且对混合仅适度敏感。相比之下,内部海洋的宜居性(由缺氧和方解石过饱和度决定)表现为非线性并且对混合非常敏感。这是因为深海以及表层海洋的某些区域对冬季深层对流的强度非常敏感。在全球变暖下对流的停止受到涡流混合的强烈调节。内部海洋的宜居性(由缺氧和方解石过饱和度决定)呈非线性表现,对混合非常敏感。这是因为深海以及表层海洋的某些区域对冬季深层对流的强度非常敏感。在全球变暖下对流的停止受到涡流混合的强烈调节。内部海洋的宜居性(由缺氧和方解石过饱和度决定)呈非线性表现,对混合非常敏感。这是因为深海以及表层海洋的某些区域对冬季深层对流的强度非常敏感。在全球变暖下对流的停止受到涡流混合的强烈调节。
更新日期:2020-09-10
down
wechat
bug