当前位置: X-MOL 学术Adv. Electron. Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Tailoring the Switching Dynamics in Yttrium Oxide‐Based RRAM Devices by Oxygen Engineering: From Digital to Multi‐Level Quantization toward Analog Switching
Advanced Electronic Materials ( IF 5.3 ) Pub Date : 2020-09-09 , DOI: 10.1002/aelm.202000439
Stefan Petzold 1 , Eszter Piros 1 , Robert Eilhardt 2 , Alexander Zintler 2 , Tobias Vogel 1 , Nico Kaiser 1 , Aldin Radetinac 1 , Philipp Komissinskiy 1 , Eric Jalaguier 3 , Emmanuel Nolot 3 , Christelle Charpin‐Nicolle 3 , Christian Wenger 4 , Leopoldo Molina‐Luna 2 , Enrique Miranda 5 , Lambert Alff 1
Affiliation  

This work investigates the transition from digital to gradual or analog resistive switching in yttrium oxide‐based resistive random‐access memory devices. It is shown that this transition is determined by the amount of oxygen in the functional layer. A homogeneous reduction of the oxygen content not only reduces the electroforming voltage, allowing for forming‐free devices, but also decreases the voltage operation window of switching, thereby reducing intra‐device variability. The most important effect as the dielectric becomes substoichiometric by oxygen engineering is that more intermediate (quantized) conduction states are accessible. A key factor for this reproducibly controllable behavior is the reduced local heat dissipation in the filament region due to the increased thermal conductivity of the oxygen depleted layer. The improved accessibility of quantized resistance states results in a semi‐gradual switching both for the set and reset processes, as strongly desired for multi‐bit storage and for an accurate definition of the synaptic weights in neuromorphic systems. A theoretical model based on the physics of mesoscopic structures describing current transport through a nano‐constriction including asymmetric potential drops at the electrodes and non‐linear conductance quantization is provided. The results contribute to a deeper understanding on how to tailor materials properties for novel memristive functionalities.

中文翻译:

通过氧气工程定制基于氧化钇的RRAM器件的开关动力学:从数字到多级量化再到模拟开关

这项工作研究了基于氧化钇的电阻式随机存取存储设备从数字电阻转换到渐变或模拟电阻转换的过程。已经表明,这种转变是由功能层中的氧气量决定的。氧含量的均匀降低不仅降低了电铸电压,从而使设备无需成型,而且减小了切换的电压操作窗口,从而降低了设备内部的可变性。当电介质通过氧气工程技术转变为亚化学计量时,最重要的影响是可以访问更多的中间(量化)导电状态。这种可重现的可控制行为的关键因素是,由于耗氧层的导热系数提高,灯丝区域的局部散热减少。量化电阻状态的改善的可访问性导致设置和重置过程都实现了半逐步切换,这对于多位存储以及神经形态系统中突触权重的准确定义是非常需要的。提供了一种基于介观结构物理学的理论模型,该模型描述了通过纳米收缩的电流传输,包括在电极处的不对称电位降和非线性电导量化。结果有助于更深入地了解如何针对新的忆阻功能定制材料属性。提供了一种基于介观结构物理学的理论模型,该模型描述了通过纳米收缩的电流传输,包括在电极处的不对称电位降和非线性电导量化。结果有助于更深入地了解如何针对新的忆阻功能定制材料属性。提供了一种基于介观结构物理学的理论模型,该模型描述了通过纳米收缩的电流传输,包括在电极处的不对称电位降和非线性电导量化。结果有助于更深入地了解如何针对新的忆阻功能定制材料属性。
更新日期:2020-09-09
down
wechat
bug