当前位置: X-MOL 学术Mech. Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Enhancing the dynamic temperature stability of epoxy with graphene oxide
Mechanics of Materials ( IF 3.4 ) Pub Date : 2020-11-01 , DOI: 10.1016/j.mechmat.2020.103593
Yu Qiao , Pengfei Wang , Xiao Xue , Mao Liu , Songlin Xu

Abstract Temperature-dependence mechanism of composites under dynamic loadings is essential for designing the aircraft with harsh operation environment. In this work, the dynamic compression mechanical behavior of graphene oxide modified epoxy (GO-epoxy) was systematically investigated over the temperature range from 298K to 423K under the loading strain rate of 5000 s−1. The results indicate that the compression properties of GO-epoxy are sensitive to the strain rate and temperature. The yield strength of pure epoxy and GO-epoxy under dynamic loading were twice those under quasi-static loading. The strength gradually decreases as the temperature increases, but the temperature stability of GO-epoxy is significantly improved compared to the pure epoxy. The addition of GO helps to inhibit the movement of the molecular chain, suppress the stress softening, prevent the evolution of the micro-cracks and then increase the thermal stability of epoxy. The high speed photograph combined with the digital image correction (DIC) method indicates that GO improves the impact resistance of epoxy at different temperatures and the interfacial interactions contribute to this strengthening mechanism. A modified temperature and rate-dependent empirical constitutive model was developed to describe the dynamic behavior of pure/GO epoxy. The fracture morphologies show the difference failure modes between the GO-epoxy and the pure epoxy. This work on the temperature dependent dynamic behavior of GO modified epoxy could provide guidance for understanding the dynamic strengthening and thermal softening behaviors of nano-reinforcing composites.

中文翻译:

用氧化石墨烯增强环氧树脂的动态温度稳定性

摘要 动态载荷下复合材料的温度依赖性机制对于设计具有恶劣运行环境的飞机至关重要。在这项工作中,在 298K 至 423K 的温度范围内,在 5000 s-1 的加载应变速率下,系统地研究了氧化石墨烯改性环氧树脂(GO-epoxy)的动态压缩力学行为。结果表明,GO-环氧树脂的压缩性能对应变速率和温度敏感。纯环氧树脂和 GO-环氧树脂在动态加载下的屈服强度是准静态加载下的两倍。随着温度的升高,强度逐渐降低,但与纯环氧树脂相比,GO-环氧树脂的温度稳定性显着提高。GO的加入有助于抑制分子链的运动,抑制应力软化,防止微裂纹的发展,进而提高环氧树脂的热稳定性。高速照片结合数字图像校正 (DIC) 方法表明,GO 提高了环氧树脂在不同温度下的抗冲击性,界面相互作用有助于这种强化机制。开发了一种改进的温度和速率相关的经验本构模型来描述纯/GO 环氧树脂的动态行为。断裂形态显示了 GO 环氧树脂和纯环氧树脂之间的不同失效模式。这项关于 GO 改性环氧树脂的温度相关动态行为的工作可以为理解纳米增强复合材料的动态强化和热软化行为提供指导。防止微裂纹的发展,进而提高环氧树脂的热稳定性。高速照片结合数字图像校正 (DIC) 方法表明,GO 提高了环氧树脂在不同温度下的抗冲击性,界面相互作用有助于这种强化机制。开发了一种改进的温度和速率相关的经验本构模型来描述纯/GO 环氧树脂的动态行为。断裂形态显示了 GO 环氧树脂和纯环氧树脂之间的不同失效模式。这项关于 GO 改性环氧树脂的温度相关动态行为的工作可以为理解纳米增强复合材料的动态强化和热软化行为提供指导。防止微裂纹的发展,进而提高环氧树脂的热稳定性。高速照片结合数字图像校正 (DIC) 方法表明,GO 提高了环氧树脂在不同温度下的抗冲击性,界面相互作用有助于这种强化机制。开发了一种改进的温度和速率相关的经验本构模型来描述纯/GO 环氧树脂的动态行为。断裂形态显示了 GO 环氧树脂和纯环氧树脂之间的不同失效模式。这项关于 GO 改性环氧树脂的温度相关动态行为的工作可以为理解纳米增强复合材料的动态强化和热软化行为提供指导。高速照片结合数字图像校正 (DIC) 方法表明,GO 提高了环氧树脂在不同温度下的抗冲击性,界面相互作用有助于这种强化机制。开发了一种改进的温度和速率相关的经验本构模型来描述纯/GO 环氧树脂的动态行为。断裂形态显示了 GO 环氧树脂和纯环氧树脂之间的不同失效模式。这项关于 GO 改性环氧树脂的温度相关动态行为的工作可以为理解纳米增强复合材料的动态强化和热软化行为提供指导。高速照片结合数字图像校正 (DIC) 方法表明,GO 提高了环氧树脂在不同温度下的抗冲击性,界面相互作用有助于这种强化机制。开发了一种改进的温度和速率相关经验本构模型来描述纯/GO 环氧树脂的动态行为。断裂形态显示了 GO 环氧树脂和纯环氧树脂之间的不同失效模式。这项关于 GO 改性环氧树脂的温度相关动态行为的工作可以为理解纳米增强复合材料的动态强化和热软化行为提供指导。
更新日期:2020-11-01
down
wechat
bug