当前位置: X-MOL 学术Mater. Chem. Phys. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Kinetic Monte Carlo simulations of ionic conductivity in oxygen ion conductors
Materials Chemistry and Physics ( IF 4.3 ) Pub Date : 2021-01-01 , DOI: 10.1016/j.matchemphys.2020.123767
Philipp Hein , Benjamin O.H. Grope , Julius Koettgen , Steffen Grieshammer , Manfred Martin

Abstract Ionic conductivities of solid-state materials are crucial for the performance of various applications ranging from batteries and fuel cells to resistive switching devices. The macroscopic ionic conductivity results directly from the microscopic energy landscape of ion diffusion. Lattice site energies and migration barriers depend on lattice defects such as vacancies and dopant ions in the local environment. The multiplicity of possible defect interactions with the migrating ion impedes the use of analytic models. While ab initio methods allow the calculation of the microscopic energy barriers for individual jumps, calculations of the macroscopic conductivity are computational very demanding, especially for more than 250 different materials and their possible ionic configurations as presented in this study. Kinetic Monte Carlo simulations allow the simulation of the ionic conductivity based on ab initio data and bridge the gap between microscopic jump events and the macroscopic conductivity. In this work, we discuss the Kinetic Monte Carlo method and its application to oxygen ion conductors for the example of doped ceria. We demonstrate how Kinetic Monte Carlo simulations can be accelerated to be 100 times faster with preserved high accuracy. Moreover, we report how the accuracy of Kinetic Monte Carlo simulations is improved with a large interaction radius and minimal computational expenses.

中文翻译:

氧离子导体中离子电导率的动力学蒙特卡罗模拟

摘要 固态材料的离子电导率对于从电池和燃料电池到电阻开关器件的各种应用的性能至关重要。宏观离子电导率直接来自离子扩散的微观能量景观。晶格位点能量和迁移势垒取决于晶格缺陷,例如局部环境中的空位和掺杂离子。与迁移离子的多种可能的缺陷相互作用阻碍了分析模型的使用。虽然 ab initio 方法允许计算单个跳跃的微观能垒,但宏观电导率的计算要求非常高,特别是对于本研究中提出的 250 多种不同材料及其可能的离子构型。动力学蒙特卡罗模拟允许基于 ab initio 数据模拟离子电导率,并弥合微观跳跃事件与宏观电导率之间的差距。在这项工作中,我们以掺杂氧化铈为例讨论动力学蒙特卡罗方法及其在氧离子导体中的应用。我们展示了如何在保持高精度的情况下将动力学蒙特卡罗模拟加速到 100 倍。此外,我们报告了动力学蒙特卡罗模拟的准确性如何通过大的交互半径和最小的计算费用来提高。我们以掺杂二氧化铈为例讨论动力学蒙特卡罗方法及其在氧离子导体中的应用。我们展示了如何在保持高精度的情况下将动力学蒙特卡罗模拟加速到 100 倍。此外,我们报告了动力学蒙特卡罗模拟的准确性如何通过大的交互半径和最小的计算开销来提高。我们以掺杂二氧化铈为例讨论动力学蒙特卡罗方法及其在氧离子导体中的应用。我们展示了如何在保持高精度的情况下将动力学蒙特卡罗模拟加速到 100 倍。此外,我们报告了动力学蒙特卡罗模拟的准确性如何通过大的交互半径和最小的计算开销来提高。
更新日期:2021-01-01
down
wechat
bug