当前位置: X-MOL 学术Milan J. Math. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Existence and Concentration of Solutions for a Class of Elliptic Kirchhoff–Schrödinger Equations with Subcritical and Critical Growth
Milan Journal of Mathematics ( IF 1.2 ) Pub Date : 2020-09-10 , DOI: 10.1007/s00032-020-00317-4
Augusto C. R. Costa , Bráulio B. V. Maia , Olímpio H. Miyagaki

This study focuses on the existence and concentration of ground state solutions for a class of fractional Kirchhoff–Schrödinger equations. We first study the problem

$$\left\{ \begin{array}{ll} M ([u]^{2}_{s} + \int_{\mathbb{R}^{N}} V(x)u^{2}) ((-{\Delta})^{s}u + V (x)u) = \bar{c}u + f(u)\, {\rm in}\,\, \mathbb{R}^N,\\ u > 0, u\, {\in} \, {H}^{s} (\mathbb{R}^N),\end{array} \right.$$

where \(s \in (0,1), N > 2s, [\cdot]_s\) is the Gagliardo semi-norm, \(\bar{c}\) is a suitable constant,M is a non-degenerate continuous Kirchhoff function that behaves like \(t^{\alpha}, V(x) = {\lambda}a(x) + 1, {\rm with}\,\, a(x) \geq 0\) and a is identically zero on the bounded set \({\Omega}_{\Upsilon}\) , and f denotes a continuous nonlinearity with subcritical growth at infinity. The proof relies on penalization arguments and variational methods to obtain the existence of a solution with minimal energy for a large value of \(\lambda\). Moreover, assuming that \(M(t) = m_{0} + b_{0}t^{\alpha}\) and utilizing the same techniques combined with a concentration-compactness lemma, we can establish the existence and concentration of solutions for the problem

$$\left\{\begin{array}{ll} M ([u]^2_s+\int_{\mathbb{R}^N}V(x)u^2) ((-\Delta)^s u + V(x)u)= h(x)u + u^{2^*_s -1} \ {\rm in} \ \mathbb{R}^N,\\ u>0, \quad u\in H^s (\mathbb{R}^N), \end{array}\right.$$

if the value of \(\lambda\) is large enough and b0 is small or m0 is large.



中文翻译:

具有亚临界和临界增长的一类椭圆Kirchhoff-Schrödinger方程解的存在性和集中性

这项研究集中于一类分数阶Kirchhoff-Schrödinger方程的基态解的存在和集中。我们首先研究问题

$$ \ left \ {\ begin {array} {ll} M([u] ^ {2} _ {s} + \ int _ {\ mathbb {R} ^ {N}} V(x)u ^ {2} )(((-{\ Delta})^ {s} u + V(x)u)= \ bar {c} u + f(u)\,{\ rm in} \,\,\ mathbb {R} ^ N,\\ u> 0,u \,{\ in} \,{H} ^ {s}(\ mathbb {R} ^ N),\ end {array} \ right。$$

其中\(s \ in(0,1),N> 2s,[\ cdot] _s \)是Gagliardo半范数,\(\ bar {c} \)是合适的常数,M是非简并的连续的Kirchhoff函数,其行为类似于\(t ^ {\ alpha},V(x)= {\ lambda} a(x)+ 1,{\ rm with} \,\,a(x)\ geq 0 \)和a在有界集\({\ Omega} _ {\ Upsilon} \)上等于零,并且f表示连续的非线性,其中亚临界增长为无穷大。该证明依赖于惩罚参数和变分方法来获得存在较大能量\(\ lambda \)的最小能量解的存在。此外,假设\(M(t)= m_ {0} + b_ {0} t ^ {\ alpha} \) 并利用相同的技术结合浓度-紧致性引理,我们可以确定问题的解的存在性和集中性

$$ \ left \ {\ begin {array} {ll} M([u] ^ 2_s + \ int _ {\ mathbb {R} ^ N} V(x)u ^ 2)((-\ Delta)^ su + V (x)u)= h(x)u + u ^ {2 ^ * _ s -1} \ {\ rm in} \ \ mathbb {R} ^ N,\\ u> 0,\ quad u \ in H ^ s(\ mathbb {R} ^ N),\ end {array} \ right。$$

如果\(\ lambda \)的值足够大且b 0小或m 0大。

更新日期:2020-09-10
down
wechat
bug