当前位置: X-MOL 学术J. Phys. Chem. C › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Interfacial Properties of Water on Hydrogenated and Fluorinated Graphene Surfaces: Parametrization of Nonbonded Interactions
The Journal of Physical Chemistry C ( IF 3.3 ) Pub Date : 2020-09-09 , DOI: 10.1021/acs.jpcc.0c05951
Amir Taqieddin 1 , Mohammad Heiranian 1 , Narayana R. Aluru 1
Affiliation  

The properties of water interfacing with functionalized two-dimensional (2D) materials play a crucial role in the design and development of high-performance nanofluidic devices. Developing nonbonding force field parameters that can be used in molecular dynamics simulations allows researchers to study and understand the interfacial properties at the molecular scale. Here, we use high-level ab initio simulations based on the random-phase approximation method to develop force field parameters for the interaction of water with hydrogenated/fluorinated graphene surfaces. By performing molecular dynamics simulations based on the force fields developed here, hydrogenated and fluorinated graphene surfaces are shown to be more hydrophobic compared to pristine graphene. Even though hydrogenated and fluorinated graphene surfaces having similar geometries, the fluorinated graphene has higher hydrophobicity due to its unique chemistry. The increase in the surface hydrophobicity leads to a decrease in the interfacial density and an increase in the slip length of water. Finally, we use first-principle simulations to show that a large decrease in the surface energy of the hydrogenated and the fluorinated graphene is the primary cause of their stronger hydrophobicity compared to pristine graphene.

中文翻译:

氢化和氟化石墨烯表面上水的界面性质:非键相互作用的参数化

与功能化二维(2D)材料接口的水的性质在高性能纳米流体装置的设计和开发中起着至关重要的作用。通过开发可用于分子动力学模拟的非键合力场参数,研究人员可以研究和了解分子尺度上的界面特性。在这里,我们使用基于随机相位逼近方法的高级从头计算,来开发用于水与氢化/氟化石墨烯表面相互作用的力场参数。通过基于此处开发的力场进行分子动力学模拟,与原始石墨烯相比,氢化和氟化石墨烯表面显示出更大的疏水性。即使氢化和氟化的石墨烯表面具有相似的几何形状,由于其独特的化学性质,氟化石墨烯具有更高的疏水性。表面疏水性的增加导致界面密度的降低和水的滑移长度的增加。最后,我们使用第一性原理模拟表明,与原始石墨烯相比,氢化和氟化石墨烯的表面能大幅下降是它们更强疏水性的主要原因。
更新日期:2020-10-02
down
wechat
bug